Ph.D. Comprehensive Examination in Algebras, Lattices, Varieties August 1992

Problem 0.

Prove that every complemented modular lattice is relatively complemented.

Problem 1.

Prove that in a modular lattice no element can have two distinct complements that are comparable to one another.

PROBLEM 2. Prove that every finitely generated distributive lattice is finite.

PROBLEM 3. Describe a class \mathcal{K} of similar algebras such that $\mathbf{HS}\mathcal{K} \neq \mathbf{SH}\mathcal{K}$.

Problem 4.

Prove that the nonzero join irreducible elements of a complemented modular lattice are exactly the atoms of the lattice.

Problem 5.

Let \mathcal{V} be a variety and let \mathbf{F} be an algebra \mathcal{V} -freely generated by two elements. Prove that \mathbf{F} has a maximal proper congruence, and that \mathcal{V} contains a simple algebra.

PROBLEM 6. Prove that every relatively complemented lattice is congruence permutable.

PROBLEM 7. Prove that if Con A is a sublattice of $Sub(A^2)$, then A is congruence permutable.

PROBLEM 8.

Suppose that \mathbf{L} is a bounded modular lattice in which 1 is the join of a finite set of atoms. Prove that \mathbf{L} is a relatively complemented lattice of finite height.