
Lecture 1. Submodules of Free Modules over a PID

The objective here is to prove that, over a principal ideal domain, every submodule of a free is
also a free module and that the rank of a free submodule is always at least as large of the ranks of
its submodules.

So let R be a (nontrivial) principal ideal domain. We know that R is a free R-module of rank 1.
What about the submodules of R? Suppose E is such a submodule. It is clear that E is an ideal
and, in fact, that the ideals of R coincide with the submodules of R. In case E is trivial (that is the
sole element of E is 0) we see that E is the free R-module of rank 0. So consider the case that E is
nontrivial. Since R is a principal ideal domain we pick w 6= 0 so that E is generated by w. That is
E = {rw | r ∈ R}. Since we know that R has {1} as a basis, we see that the map that sends 1 to w
extends to a unique module homomorphism from R onto E. Indeed, notice h(r · 1) = r · h(1) = rw
for all r ∈ R. But the homomorphism h is also one-to-one since

h(r) = h(s)
rh(1) = sh(1)
rw = sw
r = s

where the last step follows because integral domains satisfy the cancellation law and w 6= 0. In this
way we see that E is isomorphic to the free R-module of rank 1. We also see that {w} is a basis
for E.

So we find that at least all the submodules of the free R-module of rank 1 are themselves free
and have either rank 0 or rank 1. We can also see where the fact that R is a principal ideal domain
came into play.

The Freedom Theorem for Modules over a PID.
Let R be a principal ideal domain, let F be a free R-module and let E be a submodule of F. Then
E is a free R-module and the rank of E is no greater than the rank of F.

Proof. Since trivial modules (those whose only element is 0) are free modules of rank 0, we suppose
below that E is a nontrivial module. This entails that F is also nontrivial.

Let B be a basis for F and C ⊆ B. Because F is not the trivial module, we see that B is not
empty. Let FC be the submodule of F generated by C. Let EC = E ∩ FC . Evidently, C is a basis
for FC . To see that EC is free we will have to find a basis for it.

Suppose, for a moment, that C has been chosen so that EC is known to be free and that w ∈ B
with w /∈ C. Put D := C ∪{w}. Consider the map defined on D into R that sends all the elements
of C to 0 and that sends w to 1. This map extends uniquely to a homomorphism ϕ from FD onto
R and it is easy to check (as hardworking graduate student will) that the kernel of ϕ is just FC .
By the Homomorphism Theorem, we draw the conclusion that FD/FC is isomorphic to R and that
it is free of rank 1. What about ED/EC? Observe that EC = E ∩ FC = E ∩ FD ∩ FC = ED ∩ FC .
So we can apply the Second Isomorphism Theorem:

ED/EC = ED/ED ∩ FC ∼= ED + FC/FC .

But ED+ FC/FC is a submodule of FD/FC . This last is a free R-module of rank 1. We saw above
that every submodule of a free R-module of rank 1 must be itself a free R-module and have rank
either 0 or 1. In this way, we find that either ED = EC (in the rank 0 case) or else ED/EC is a free
R-module of rank 1. Let us take up this latter case. Let X be a basis for EC , which we assumed,
for the moment, was free. Pick u ∈ ED so that {u/EC} is a basis for ED/EC .
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We contend that X∪{u} is a basis for ED. To establish linear independence, suppose x0, . . . , xn−1
are distinct element of X, that r0, . . . , rn ∈ R and that

0 = r0x0 + · · ·+ rn−1xn−1 + rnu.
First notice that

rn(u/EC) = rnu/EC = (r0x0 + · · ·+ rn−1xn−1 + rnu)/EC = 0/EC .
Since {u/EC} is a basis for ED/EC , we must have rn = 0. This leads to

0 = r0x0 + · · ·+ rn−1xn−1.

But now since X is a basis for EC we see that 0 = r0 = · · · = rn−1. So we find that X ∪ {u} is
linearly independent.

To see that X ∪ {u} generates ED, pick z ∈ ED. Since {u/EC} is a basis for ED/EC , pick r ∈ R
so that

z/EC = ru/EC .
This means that z−ru ∈ EC . ButX is a basis of EC . So pick x0, . . . , xn−1 ∈ X and r0, . . . , rn−1 ∈ R
so that

z − ru = r0x0 + · · ·+ rn−1xn−1.

Surely this is enough to see that z is in the submodule generated by X ∪{u}. So this set generates
ED and we conclude that it must be a basis of ED.

In this way we see that for C ⊆ D ⊆ B where D arises from adding an element to C, if EC is
free, then so is ED and that either ED = EC or a basis for ED can be produced by adding just one
element to a basis for EC .

With this in mind, we can envision a procedure for showing that E is free and its rank cannot
be larger than that of F. Notice that E = E ∩ F = E ∩ FB. So E = EB. The idea is simple. We
will start with ∅ ⊆ B. We observe that F∅ = E∅ is the module whose sole element is 0. It is
free of rank 0. Next we select an element w ∈ B and form ∅ ∪ {w} = {w}. We find that E{w} is
free of rank 0 or rank 1. We select another element and another and another. . . until finally all the
elements of B have been selected. At this point we would have EB is free and its rank can be no
more than the total number of elements we selected, namely |B| which is the rank of F.

To carry out this program, in case B were finite or even countable, we could mount a proof by
induction. You can probably see how it might be done. But we want to prove this for arbitary sets
B. We could still pursue this inductive strategy openly by well-ordering B and using transfinite
induction. By using the well-ordering we would always know what was meant by “pick the next
element of B.”

Instead, we will invoke Zorn’s Lemma to short-circuit this rather long induction.
Let F = {f | f is a function with dom f ⊆ B and range f a basis for Edom f}. Recalling that

functions are certain kinds of sets of order pairs, we see that F is paritally ordered by set inclusion.
Maybe it helps to realize that to assert f ⊆ g is the same as asserting that g extends f . We note that
F is not empty since the empty function (the function with empty domain) is a member of F. To
invoke Zorn’s Lemma, let C be any chain included in F. Let h =

⋃
C. Evidently f ⊆ h for all f ∈ C.

So h is an upper bound of C. We contend that h ∈ F. We ask the hard-working graduate students
to check that the union of any chain of functions is itself a function. Once you do that bit of work,
it should be evident that dom h =

⋃
{dom f | f ∈ C} and that rangeh =

⋃
{range f | f ∈ C}. So

it remains to show that rangeh is a basis for Edomh. To see that rangeh is a generating set, let z
be an arbitrary element of Edomh = E ∩Fdomh. Hence z must be generated by some finitely many
elements belong in dom h. This means there are finitely many functions f0, . . . , fn−1 ∈ C so that
z is generated by finitely many elements of dom f0 ∪ · · · ∪ dom fn−1. But dom f0, . . . ,dom fn−1,
rearranged in some order, forms a chain under inclusion. So z ∈ Fdom f` for some ` < n. Hence
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z ∈ Edom f` . But range f` is a basis for Edom f` . Because range f` ⊆ rangeh we find that rangeh
has enough elements to generate z. Since z was an arbitrary element of Edomh we conclude that
rangeh generates Edomh. It remains to show that rangeh is linearly independent. But rangeh is
the union of the chain {range f | f ∈ C}. I ask the hard-working graduate students to prove that
the union of any chain of linearly independent sets must also be linearly independent. Once you
have done this you will be certain that h belongs to F. By Zorn, let g be a maximal element of F.

We would be done if dom g = B, since then E = E ∩ F = E ∩ FB = EB = Edom g. In which case,
range g would be a basis for E and rank E = | range g| ≤ |dom g| = |B| = rank F.

Consider the possibility that dom g is a proper subset of B. Put C = dom g and put X = range g.
Let w ∈ B with w /∈ dom g. Put D = C ∪ {w}. As we have seen above, either ED = EC or
X ∪ {u} is a basis for ED, for some appropriately chosen u. We can now extend g to a function
g′ by letting g′(w) be any element of range g in the case when ED = EC and by letting g′(w) = u
is the alternative case. In this way, g′ ∈ F, contradicting the maximality of g. So we reject this
possibility.

This completes the proof. �

Corollary 0. Let R be a principal ideal domain. Every submodule of a finitely generated R-module
must itself be finitely generated.

Proof. Suppose M is an R-module generated by n elements. Let N by a submodule of M.
Now let F be the free R-module with a basis of n elements. There is a function that matches this

basis with the generating set of M. So, appealing to freeness, there is a homomorphism h from F
onto M. Let E = {v | v ∈ F and h(v) ∈ N}. It is straightforward to check (will you do it?) that
E is closed under the module operations. So we get a submodule E of F. Moreover, the restriction
of h to E is a homomorphism from E onto N. But by our theorem E is generated by a set with no
more than n elements. Since the image, under a homomorphism, of any generating set for E must
be a generating set of N (can you prove this?), we find that N is finitely generated. �


