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SOLVABILITY BY RADICALS AND OTHER THINGS GALOIS

MAY HAVE KNOWN

PROBLEM 73.
Let p be prime and let H be a subgroup of Sp . Prove that if H has a transposition and an element of order
p, then H = Sp . Provide an explicit counterexample when p is not prime.

Solution
Let the p-element set to be permuted be {0,1,2, . . . , p −1}. Without loss of generality, suppose (0,1) ∈ H .
Now any element of Sp of order p must be a p-cycle. Let τ be a p-cycle. Observe that it is always possible
to pick k so that τk (0) = 1. So without loss of generality, we can assume that (0,1,2, . . . , p−1) ∈ H . Since we
know that every premutation is a product of transpositions, it will suffice to show that every transposition
can be generated by (0,1) and (0,1,2, . . . , p−1). Let us denote this p-cycle by τ. The following contentions
are easy to establish by direct calculation.
Contention: τ( j ,k)τ−1 = ( j +1,k +1) where the + works modulo p and j 6= k.
Contention: ( j ,`)( j ,k)( j ,`) = (`,k) where j ,k, and ` are distinct.
Contention: τ`( j ,k)τ−` = ( j +`,k +`) where the + works modulo p and j 6= k.

According to the first two contentions, (0,1) and τ generate all transpositions of the form (0, j ). The
last contention produces all the rest of the transpositions.

The contentions above hold, even if p is not prime. What breaks down in the composite case, is that
τk need not be a p-cycle when 0 < k < p. As a result we have no justification for assuming the given
transposition transposes adjacent elements of the longer cycle.

Here is a counterexample for S4. Let τ= (0,1,2,3) be the 4-cycle and take σ= (0,2) as the transposition.
Let γ= (1,3). We see that γ= τστ−1. We also see σ= τγτ−1. We note, as well, that σ and γ are disjoint
transpositions. This leads us to the following equations:

σγ= γσ
τσ= γτ
τγ=στ
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A direct calcultation gives us
σγ= τ2

Recalling that τ has order 4 and transpositions have order 2, this leads us to the conclusion that the
following 12 elements constitute a subgroup of S4:

τ0,τ1,τ2,τ3

σ,στ1,στ2,στ3

γ,γτ1,γτ2,γτ3

But S4 has 24 elements, so the subgroup generated by (0,2) and (0,1,2,3) is a proper subgroup.

PROBLEM 74.
Prove that x5 −2x3 −8x +2 is not solvable by radicals over the fieldQ of rational numbers.

Solution
Observe that this polynomial is irreducible according to Eisenstein and a Calculus I exercise shows that its
derivative is 0 at ±p2. It follows that the polynomial has three real roots, one less than −p2, one properly
between −p2 and

p
2, and one greater than

p
2. The remaining roots must be nonreal complex numbers

and, since the polynomial has real coefficients, these remaining roots must be complex conjugates. By a
Fact proven in class, the Galois group of the polynomial must be S5 (since 5 is prime). Since 5 > 4 we
know that this group is not solvable. So by Galois’ Criterion, the polynomial is not solvable by radicals.

PROBLEM 75.
Let F be a finite field. Prove that the product of all the nonzero elements of F is −1. Using this, prove
Wilson’s Theorem:

(p −1)! ≡−1 (mod p)

for every prime number p.

Solution
Let q be the cardinality of F . We know that the elements of F are precisely the roots of xq − x. This
means that the roots of xq−1 −1 are precisely the nonzero elements of F . Let the nonzero elements be
r0,r1, . . .rq−2. Then xq−1 − 1 = (x − r0)(x − r1) . . . (x − rq−2). This tells us that −1 is the product of the
nonzero elements of F . (The careful graduate student will realize that (−1)q−1 = 1 for all possible values
of q.)

For the last bit, let F = Zp where p is prime. The nonzero elements of this field are 1,2,3, . . . , p −1.
Multiplication in Zp is performed by forming the product in Z and then extracting the residue modulo p.
In other words, Wilson’s Theorem.
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PROBLEM 76.
Let E be the splitting field of x5−2 over the fieldQ of rationals. Find the lattice (draw a picture) of all fields
intermediate betweenQ and E .

Solution
Let ζ be a primitive 5th root of unity. Clearly, both 5

p
2 (the real fifth root of 2) and 5

p
2ζ are roots

of x5 − 2. So they belong to the splitting field E . Dividing, we see that ζ ∈ E . It is evident that
5
p

2, 5
p

2ζ, 5
p

2ζ2, 5
p

2ζ3, 5
p

2ζ4 lists the five distinct roots of x5 −2. So E =Q[ 5
p

2,ζ].
To conserve notation we put

rk := 5
p

2ζk for 0 ≤ k < 5

So r0,r1,r2,r3, and r4 are the five distinct roots of x5 −2 in E .
Observe that [Q[r0] : Q] = 5 since x5 − 2 is irreducible over Q by Eisentstein. Also observe that

[Q[ζ] :Q] = 4 since ζ is a root of λ5(x) which we know is irreducible over Q and has degree 4. Thus [E :Q]
is divisible by both 5 and 4. This means [E :Q] is divisible by 20, since 4 and 5 are relatively prime. Now
consider

[
E : Q[r0]

]
. Since ζ is a root of λ5(x), which has degree 4, we see that this dimension is no

greater than 4. This means that [E :Q] is no larger than 20. So we find that [E :Q] = 20. It follows that
[Q[ζ,r0] :Q[r0]] = 4. In turn, this entails that λ5(x) is irreducible over Q[r0]. We also get

[
E :Q[ζ]

] = 5.
Since E =Q[r0,ζ] and r0 is a root of the monic polynomial x5 −2, we see x5 −2 is irreducible over Q[ζ].

Here are four obvious intermediate fields: Q,Q[ζ],Q[r0] and E =Q[ζ,r0]. It is easy to see that these
are all distinct. Clearly any field properly between Q and E must have dimension 2,4,5, or 10. So the only
remaining question is whether there are any others. There are.

Since x5 −2 is irreducible over Q (by Eisenstein) Kronecker tells us that Q[rk ] is a subfield of E of
dimension 5, when 0 ≤ k < 5. No two of these fields can coincide, since given both ri = 5

p
2ζi and r j = 5

p
2ζ j

with i 6= j , after a bit of fiddling we can get both r0 and ζ using just the field operations. So now we have
at least five intermediate fields of dimension 5.

Now Q[ζ] is the splitting field of the cyclotomic polymonial λ5(x) over Q. This polynomial is irreducible
over Q and has degree 4. So Kronecker tells us that it has dimension 4. So its Galois group has order
4. Kronecker also told us that the map that sends ζ 7→ ζ2 extends to a automorphism of Q[ζ]. This
automorphism belongs to the Galois group and the automorphism is easily seen to have order 4. So the
Galois group is the cyclic group of order 4. The subgroup lattice of this group is a three-element chain. By
the Fundamental Theorem of Galois Theory, there will be exactly one field of dimension 2 sitting between
Q and Q[ζ]. We know that conjugation, restricted to Q[ζ] is the element of order 2. The field sitting
properly between Q and Q[ζ] is the fixed field of conjugation. Notice that ζ+ζ4 = ζ+ ζ̄ ∉Q, for otherwise
(x −ζ)(x − ζ̄) ∈Q[x] and it would be a factor of the irreducible polynomial λ5(x). But ζ+ ζ̄ is obviously
fixed by conjugation. So, taking ω= ζ+ ζ̄ we find the field of dimension 2 is Q[ω]. For reassurance, we
note that x2 +x −1 is the minimal polynomial of ω.

Now let r be one of our five distinct roots of x5 −2. Since Q[r ] has dimension 5 it follows that any
irreducible polynomial in Q[x] of degree 2 (or 3) will also be irreducible over Q[r ]. By Kronecker, this
means that Q[r,ω] must have dimension 10 over Q.

At this point, we have one field of dimension 1 (namely Q), one field of dimension 2, one field of
dimension 4, five fields of dimension 5, five fields of dimension 10 and one field of dimension 20.

Here is what the diagram looks like up to this point.
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Q[ζ,r0]

Q

Q[r0] Q[r1] Q[r2] Q[ω]

Q[ζ]

Q[r3] Q[r4]

Q[r0,ω] Q[r1,ω] Q[r2,ω] Q[r3,ω] Q[r4,ω]

Can there be any other intermediate fields?
Let’s invoke the Fundamental Theorem of Galois Theory. The Galois group Gal(E/Q) has cardinality

20 and it is embeddable into S5. Here the underlying 5-element set is our five distinct roots of x5 −2.
Notice that Gal(E/Q[r0]) is a subgroup of Gal(E/Q). But Gal(E/Q[r0]) is a cyclic group of order 4—the
reasoning we used for Gal([ζ]/Q) works here too. This means there is a 4-cycle permuting the nonreal
roots. The uniqueness of splitting fields argument also gives us an automorphism of E that sends r0 7→ r1

which fixes ζ. This automorphism has order 5. So in Gal(E/Q) we have a 4-cycle and a 5-cycle. If you
play around a bit, you will see that this generates a subgroup of order 20. After a while you can churn out
all the subgroups and discover there are not more intermediate fields. There are even software programs
for carrying out these kinds of group calculations.

A more sophisticated approach would find that there is one Sylow 5-subgroup and 5 Sylow 2-subgroups.
In fact, Sylow tells us there are either 5 Sylow 2-subgroups or just 1. Certainly, there are no more. Since
we already must have at least 5, Sylow tells us we have exactly 5. The Sylow 2-subgroups are all conjugate
and so are isomorphic. Since we have an element of order 4, it follows that they are all copies of the cyclic
group of order 4 and each has exactly one subgroup of order 2. Since every 2-subgroup is included in a
Sylow 2-subgroup, we see that there are no more than 5 subgroups of order 2. But by our field analysis
above, there are at least 5. We have in hand all possible subgroups, except those of order 10. A subgroup
of order 10 must include the only subgroup of order 5 and it must have an element of order 2. There are
exactly 5 elements of order 2. One of them is complex conjugation. Restricted to our 5 roots, it is the
permutation σ= (r1,r4)(r2,r3). Let τ= (r0,r1,r2,r3,r4). An easy calculation shows

στ4 = τσ.

By way of this equation, any product of σ’s and τ’s in any order can be rearranged to obtain an element
on the list of 10 distinct permutations below:

τ0,τ,τ2,τ3,τ4,σ,στ,στ2,στ3,στ4.

These elements comprise a subgroup of order 10. We would be done, if we can show that στk has order
2 for 0 ≤ k < 5, since then the subgroup has all the elements of order 5 as well as all the elements of order
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2. Straightforward calculations show

σ= (r1,r4)(r2,r3)

στ= (r0,r4)(r1,r3)

στ2 = (r0,r3)(r1,r2)

στ3 = (r0,r2)(r3,r4)

στ4 = (r0,r1)(r2,r4)

and these all have order 2. So we have found the unique subgroup of order 10. So our lattice diagram
above accounts for all the intermediate fields.

PROBLEM 77.
Let F be a field of characteristic p, where p is a prime. Let E be a field extending F . Prove that E is a
normal separable extension of F of dimension p if and only if E is the splitting field over F of an irreducible
polynomial of the form xp −x −a, for some a ∈ F .

Solution
(⇐)
Observe that f (x) = xp −x −a is a function with period 1. That is

f (x +1) = (x +1)p − (x +1)−a = xp +1p −x −1−a = xp −x −a = f (x).

So if u ∈ E is a root of f (x) then all of u,u +1,u +2, . . . ,u +p −1 are also roots and they are all distinct.
This means that every root of f (x) is really a primitive root of f (x). So E = F [u] where u is any root of
f (x). Since we are assuming that f (x) is irreducible, Kronecker tells us that [E : F ] = deg f (x) = p. So all
our desires are fulfilled by the Key Theorem.

(⇒)
Now we assume that E is a normal separable extension of F of dimension p over F . By the Key Theorem
E is the splitting field of some separable polynomial over F and the Galois group Gal(E/F ) is a cyclic
group of cardinality p. Let Id,σ, . . . ,σp−1 be the elements of this Galois group. Problem 8 tells us that,
as members of a vector space over E these maps are linearly independent. Hence

u +σ(u)+σ2(u)+·· ·+σp−1(u)

cannot be 0 for every u ∈ E . So pick u ∈ E so that

u +σ(u)+σ2(u)+·· ·+σp−1(u) = b 6= 0.

Now notice that σ(b) =σ(u)+σ2(u)+·· ·+σp−1(u)+σp (u) = b since σ has order p. So b is fixed by each
element of the Galois group. By the Fundamental Theorem of Galois Theory, b ∈ F . Now let

c =σ(u)+2σ2(u)+·· ·+ (p −1)σp−1(u).
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Then

σ(c) =σ2(u)+2σ3(u)+·· ·+ (p −2)σp−1(u)+ (p −1)σp (u)

=σ2(u)+2σ3(u)+·· ·+ (p −2)σp−1(u)+ (p −1)u

=σ2(u)+2σ3(u)+·· ·+ (p −2)σp−1(u)+ (−1)(b −σ(u)−σ2(u)−·· ·−σp−1(u))

=σ(u)+2σ2(u)+·· ·+ (p −1)σp−1(u)−b

= c −b

Now put v =− c
b . From this we see

σ(v) =−σ(c)

σ(b)
=−c −b

b
=− c

b
+1 = v +1.

So, more generally, we see that σk (v) = v +k for all natural numbers k < p.
Now put a = v p − v . Observe

σ(a) = (σ(v))p −σ(v) = (v +1)P − (v +1) = v p +1p − v −1 = v p − v = a.

This means that a is fixed by all the members of the Galois group. So a ∈ F , since F is the fixed field
of the Galois group. That is v is a root of xp − x −a ∈ F [x]. Since the members of the Galois group fix
the elements of F , the image of v under any one of these members must also be a root of xp −x −a. So
each (x − (v +k)) is a factor of xp −x −a. It is not too hard to see that xp −x −a =∏

k<p (x − (v +k)).
If we could show that xp −x−a is irreducible, then Kronecker would tell us that [F [v] : F ] = p = [E : F ].

So E = F [v] and we would be done.
Now the minimal polynomial (over F ) of v has degree [F [v] : F ]. Since F [v] = F [v+k] we see that the

minimal polynomial of v and the minimal polynomial of v +k (for any k < p) have the same degree. Also
these minimal polynomials are factors of xp −x−a and, in fact, must give the decomposition of xp −x−a
into its irreducible factors. So the common degree of the minimal polynomials must itself be a factor of
the prime p. So either xp − x − a is irreducible or else all those minimal polynomials have degree 1. In
the latter case, v ∈ F . This is impossible since σ(v) = v +1 6= v , meaning that v is not fixed by σ and so
cannot belong to the fixed field F .


