Instructions: This worksheet is for practice and is NOT to be turned in for a grade. Answer each question.

1 Chapter 8

1. Which of these transformations is not linear? The input is $\mathbf{v}=\left(v_{1}, v_{2}\right)$:
(a) $T(\mathbf{v})=\left(v_{2}, v_{1}\right)$

Solution 1. We check that $T(k \mathbf{v}+\ell \mathbf{u})=k T(\mathbf{v})+\ell T(\mathbf{u})$.
$T(k \mathbf{v}+\ell \mathbf{u})=T\left(\left(k v_{1}+\ell u_{1}, k v_{2}+\ell u_{2}\right)\right)=\left(k v_{2}+\ell u_{2}, k v_{1}+\ell u_{1}\right)=k\left(v_{2}, v_{1}\right)+\ell\left(u_{2}, u_{1}\right)$
$=k T(\mathbf{v})+\ell T(\mathbf{u})$. Thus, this is a linear transformation.
(b) $T(\mathbf{v})=\left(v_{1}, v_{1}\right)$

Solution 2. We check that $T(k \mathbf{v}+\ell \mathbf{u})=k T(\mathbf{v})+\ell T(\mathbf{u})$.
$T(k \mathbf{v}+\ell \mathbf{u})=T\left(\left(k v_{1}+\ell u_{1}, k v_{2}+\ell u_{2}\right)\right)=\left(k v_{1}+\ell u_{1}, k v_{1}+\ell u_{1}\right)=k\left(v_{1}, v_{1}\right)+\ell\left(u_{1}, u_{1}\right)=$ $k T(\mathbf{v})+\ell T(\mathbf{u})$. Thus, this is a linear transformation.
(c) $T(\mathbf{v})=\left(0, v_{1}\right)$

Solution 3. This is linear by similar argument above.
(d) $T(\mathbf{v})=(0,1)$

Solution 4. This is not linear since the identity does not exist in this map!
(e) $T(\mathbf{v})=v_{1}-v_{2}$

Solution 5. We check that $T(k \mathbf{v}+\ell \mathbf{u})=k T(\mathbf{v})+\ell T(\mathbf{u})$.
$T(k \mathbf{v}+\ell \mathbf{u})=T\left(\left(k v_{1}+\ell u_{1}, k v_{2}+\ell u_{2}\right)\right)=k v_{1}+\ell u_{1}-k v_{2}-\ell u_{2}=k\left(v_{1}-v_{2}\right)+\ell\left(u_{1}-u_{2}\right)=$ $k T(\mathbf{v})+\ell T(\mathbf{u})$. Thus, this is a linear transformation.
(f) $T(\mathbf{v})=v_{1} v_{2}$

Solution 6. We check that $T(k \mathbf{v}+\ell \mathbf{u})=k T(\mathbf{v})+\ell T(\mathbf{u})$.
$T(k \mathbf{v}+\ell \mathbf{u})=T\left(\left(k v_{1}+\ell u_{1}, k v_{2}+\ell u_{2}\right)\right)=\left(k v_{1}+\ell u_{1}\right)\left(k v_{2}+\ell u_{2}\right)=k^{2} v_{1} v_{2}+\ell k u_{1} v_{2}+$ $\ell k u_{2} v_{1}+\ell^{2} u_{1} u_{2} \neq k T(\mathbf{v})+\ell T(\mathbf{u})$. Thus, this is not a linear transformation! Try finding a counterexample!
2. Suppose a linear transformation T satisfies $T(1,1)=(2,2)$ and $T(2,0)=(0,0)$. Find $T(\mathbf{v})$ when:
(a) $\mathbf{v}=(2,2)$

Solution 7. $T(2,2)=T(2(1,1))=2 T(1,1)=2(2,2)=(4,4)$
(b) $\mathbf{v}=(3,1)$

Solution 8. $T(3,1)=T((1,1)+(2,0))=T(1,1)+T(2,0)=(2,2)+(0,0)=(2,2)$
(c) $\mathbf{v}=(-1,1)$

Solution 9. $T(-1,1)=T((1,1)-(2,0))=T(1,1)-T(2,0)=(2,2)-(0,0)=(2,2)$
(d) $\mathbf{v}=(a, b)$

Solution 10. $T(a, b)=T\left(\frac{a-b}{2}(2,0)+b(1,1)\right)=(0,0)+(2 b, 2 b)=(2 b, 2 b)$
3. Suppose T is a linear transformation from V to W. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a basis for V and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ be a basis for W. Suppose $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{2}$ and $T\left(\mathbf{v}_{2}\right)=T\left(\mathbf{v}_{3}\right)=\mathbf{w}_{1}+\mathbf{w}_{3}$. Find the matrix A that corresponds to T. Use A to find $T\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)$.

Solution 11. $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$ since the columns represent the original basis and the rows represent the new basis. Thus, we take the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ since this is the coefficients of the desired linear combination and we do as follows:
$A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=2 \mathbf{w}_{1}+\mathbf{w}_{2}+2 \mathbf{w}_{3}$.
4. Let T be linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2}. Take the standard basis for \mathbb{R}^{3} and let $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ be the basis for \mathbb{R}^{2}. Find the matrix representation A under these bases for the linear transformation T where $T(1,0,0)=(1,0)$ and $T(0,1,0)=(2,2)$ and $T(0,0,1)=(-1,1)$. Use the matrix A to compute $T(1,2,1)$.

Solution 12. $A=\left[\begin{array}{ccc}0 & 2 & 1 \\ 1 & 0 & -2\end{array}\right]$. Thus, $T(1,2,1)=T((1,0,0)+2(0,1,0)+(0,0,1))$ and $A\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ -1\end{array}\right]$. Therefore, $T(1,2,1)=5(1,1)-(1,0)=(4,5)$.
5. Let T be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} so that $T\left(\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right)=\left[\begin{array}{c}5 v_{1}+v_{2} \\ -2 v_{1}+2 v_{2}\end{array}\right]$. Find bases for \mathbb{R}^{2} so that the matrix representation of T is diagonal.
Solution 13. Since we have the transformations for the basis elements, we get $A=\left[\begin{array}{cc}5 & 1 \\ -2 & 2\end{array}\right]$. Let us find the eigenvalues and eigenvectors.
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}5-\lambda & 1 \\ -2 & 2-\lambda\end{array}\right|=(5-\lambda)(2-\lambda)+2=\lambda^{2}-7 \lambda+12=(\lambda-3)(\lambda-4)$. Thus, $\lambda_{1}=3$ and $\lambda_{2}=4$. For λ_{1},

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 1 \\
-2 & -1
\end{array}\right] \Rightarrow 2 x+y=0 \Rightarrow 2 x=-y \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] . \text { For } \lambda_{2}=4,} \\
& {\left[\begin{array}{cc}
1 & 1 \\
-2 & -2
\end{array}\right] \Rightarrow x+y=0 \Rightarrow x=-y \Rightarrow \mathbf{x}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .} \\
& T\left(\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-6
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+0\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
-4
\end{array}\right]=0\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+4\left[\begin{array}{c}
1 \\
-1
\end{array}\right] . \text { Thus, }
\end{aligned}
$$

with this basis of eigenvectors, $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]=\Lambda$.

