Instructions: This worksheet is for practice and is NOT to be turned in for a grade. Answer each question.

1 Chapter 8

1. Which of these transformations is not linear? The input is $\mathbf{v}=\left(v_{1}, v_{2}\right)$:
(a) $T(\mathbf{v})=\left(v_{2}, v_{1}\right)$
(b) $T(\mathbf{v})=\left(v_{1}, v_{1}\right)$
(c) $T(\mathbf{v})=\left(0, v_{1}\right)$
(d) $T(\mathbf{v})=(0,1)$
(e) $T(\mathbf{v})=v_{1}-v_{2}$
(f) $T(\mathbf{v})=v_{1} v_{2}$
2. Suppose a linear transformation T satisfies $T(1,1)=(2,2)$ and $T(2,0)=(0,0)$. Find $T(\mathbf{v})$ when:
(a) $\mathbf{v}=(2,2)$
(b) $\mathbf{v}=(3,1)$
(c) $\mathbf{v}=(-1,1)$
(d) $\mathbf{v}=(a, b)$
3. Suppose T is a linear transformation from V to W. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a basis for V and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ be a basis for W. Suppose $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{2}$ and $T\left(\mathbf{v}_{2}\right)=T\left(\mathbf{v}_{3}\right)=\mathbf{w}_{1}+\mathbf{w}_{3}$. Find the matrix A that corresponds to T. Use A to find $T\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)$.
4. Let T be linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2}. Take the standard basis for \mathbb{R}^{3} and let $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ be the basis for \mathbb{R}^{2}. Find the matrix representation A under these bases for the linear transformation T where $T(1,0,0)=(1,0)$ and $T(0,1,0)=(2,2)$ and $T(0,0,1)=(-1,1)$. Use the matrix A to compute $T(1,2,1)$.
5. Let T be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} so that $T\left(\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right)=\left[\begin{array}{c}5 v_{1}+v_{2} \\ -2 v_{1}+2 v_{2}\end{array}\right]$. Find bases for \mathbb{R}^{2} so that the matrix representation of T is diagonal.
