Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 15th. Show all work to receive full credit.

1 Chapter 6

1. Find the eigenvalues and eigenvectors of these four matrices:

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right] & B=\left[\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right] \\
C=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] & D=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
\end{array}
$$

Solution 1. $\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}1-\lambda & 4 \\ 2 & 3-\lambda\end{array}\right|=(1-\lambda)(3-\lambda)-8=\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)$.
Thus, $\lambda=5,-1$. When $\lambda=5$,
$\left[\begin{array}{cc}-4 & 4 \\ 2 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow 2 x-2 y=0 \Rightarrow x=y$. Thus, $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. By similar process, the next eigenvector is $\mathbf{y}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. For the rest of the matrices, I will not show the process since it is identical to this.

For $B, \lambda=0,6$ with eigenvectors $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
For $C, \lambda=1$ twice with eigenvector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
For $D, \lambda=1$ twice with eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
2. If A has $\lambda_{1}=4$ and $\lambda_{2}=5$ then $\operatorname{det}(A-\lambda I)=(\lambda-4)(\lambda-5)=\lambda^{2}-9 \lambda+20$. Find three matrices that have trace $a+d=9$ and determinant 20 and $\lambda=4,5$.
Solution 2. $\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right],\left[\begin{array}{ll}4 & 1 \\ 0 & 5\end{array}\right],\left[\begin{array}{ll}4 & 2 \\ 0 & 5\end{array}\right]$.
3. Factor these two matrices into $A=X \Lambda X^{-1}$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \quad A=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]
$$

Solution 3. First we find the eigenvalues. $\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}1-\lambda & 2 \\ 0 & 3-\lambda\end{array}\right|=(1-\lambda)(3-\lambda)=$ $(\lambda-1)(\lambda-3)$. Thus, $\lambda_{1}=1$ and $\lambda_{2}=3$. When $\lambda_{1}=1$,
$\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. When $\lambda_{2}=3$,
$\begin{array}{ll}{\left[\begin{array}{cc}-2 & 2 \\ 0 & 0\end{array}\right]}\end{array}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow-2 x+2 y=0 \Rightarrow x=y \Rightarrow \mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Thus, we have the follow-
$X=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \Lambda=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$, and $X^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$. By similar process we get the following for the second matrix:
$\lambda_{1}=0$ and $\lambda_{2}=4 . \mathbf{x}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Thus,
$X=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right], \Lambda=\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right]$, and $X^{-1}=(1 / 4)\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]$.
4. Write down the most general matrix that has eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right] .\left(\right.$ Hint: Use $\left.X \Lambda X^{-1}\right)$

Solution 4. $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right](-1 / 2)\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]=(-1 / 2)\left[\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ \lambda_{1} & -\lambda_{2}\end{array}\right]\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$ $=(-1 / 2)\left[\begin{array}{ll}-\lambda_{1}-\lambda_{2} & -\lambda_{1}+\lambda_{2} \\ -\lambda_{1}+\lambda_{2} & -\lambda_{1}-\lambda_{2}\end{array}\right]$.
5. The rabbit population shows fast growth (from 6r) but loss to wolves (from -2 w). The wolf population always grows in this model:

$$
\frac{d r}{d t}=6 r-2 w \quad \text { and } \quad \frac{d w}{d t}=2 r+w
$$

Find the eigenvalues and eigenvectors. If $r(0)=w(0)=30$ what are the populations at time t ? After a long time, what is the ratio of rabbits to wolves?
Solution 5. Let $\mathbf{u}=\left[\begin{array}{c}r \\ w\end{array}\right] \cdot \frac{d \mathbf{u}}{d t}=\left[\begin{array}{cc}6 & -2 \\ 2 & 1\end{array}\right]\left[\begin{array}{c}r \\ w\end{array}\right]$ is the system we are looking at. Let us find the eigenvalues and eigenvectors of the matrix.
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}6-\lambda & -2 \\ 2 & 1-\lambda\end{array}\right|=(6-\lambda)(1-\lambda)+4=\lambda^{2}-7 \lambda+10=(\lambda-5)(\lambda-2)$. Thus, $\lambda_{1}=2$ and $\lambda_{2}=5$. When $\lambda_{1}=2$,
$\left[\begin{array}{ll}4 & -2 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}r \\ w\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow 2 x-y=0 \Rightarrow 2 x=y \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. When $\lambda_{2}=5$,
$\begin{aligned} & {\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]}\end{aligned}\left[\begin{array}{c}r \\ w\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow x-2 y=0 \Rightarrow x=2 y \Rightarrow \mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Now we have the following
$\mathbf{u}=C e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+D e^{5 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}C e^{2 t}+2 D e^{5 t} \\ 2 C e^{2 t}+D e^{5 t}\end{array}\right]$. When $\mathbf{u}(0)=\left[\begin{array}{l}30 \\ 30\end{array}\right]$. Thus, $C+2 D=30$ and $2 C+D=30$. By substitution, $C+60-4 C=30 \Rightarrow C=10, D=10$. Thus, $\mathbf{u}=\left[\begin{array}{l}10 e^{2 t}+20 e^{5 t} \\ 20 e^{2 t}+10 e^{5 t}\end{array}\right]$.
Ratio $=\lim _{t \rightarrow \infty} \frac{r(t)}{w(t)}=\lim _{t \rightarrow \infty} \frac{10 e^{2 t}+20 e^{5 t}}{20 e^{2 t}+10 e^{5 t}}=\lim _{t \rightarrow \infty} \frac{10 e^{2 t}\left(1+2 e^{3 t}\right)}{10 e^{2 t}\left(2+e^{3 t}\right)}=\lim _{t \rightarrow \infty} \frac{1+2 e^{3 t}}{2+e^{3 t}}=$ $\lim _{t \rightarrow \infty} \frac{2 e^{3 t}}{e^{3 t}}=2$.
6. Find the eigenvalues and the unit eigenvectors of $S=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0\end{array}\right]$.(Hint: Use the fact that S is symmetric.)

Solution 6. $\operatorname{det}(S-\lambda I)=\left|\begin{array}{ccc}2-\lambda & 2 & 2 \\ 2 & -\lambda & 0 \\ 2 & 0 & -\lambda\end{array}\right|=(2-\lambda) \lambda^{2}+4 \lambda+4 \lambda=-\lambda^{3}+2 \lambda^{2}+8 \lambda=$ $-\lambda\left(\lambda^{2}-2 \lambda-8\right)=\lambda(\lambda-4)(\lambda+2)$. Thus, $\lambda_{1}=0, \lambda_{2}=4$, and $\lambda_{3}=-2$. When $\lambda_{1}=0$, $\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$. When $\lambda_{2}=4$,
$\left[\begin{array}{ccc}-2 & 2 & 2 \\ 2 & -4 & 0 \\ 2 & 0 & -4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ We reduce to get $\left[\begin{array}{ccc}0 & -2 & 2 \\ 2 & -4 & 0 \\ 2 & 0 & -4\end{array}\right]$. Thus, $-2 y+2 z=0,2 x-4 y=0$ and $2 x-4 z=0$. Therefore, $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$. When $\lambda_{3}=-2$, $\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. We reduce to get $\left[\begin{array}{ccc}0 & -2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2\end{array}\right]$. Thus, $-2 y+2 z=0,2 x+2 y=0$,
and $2 x+2 z=0$. Therefore, $\mathbf{x}_{3}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$. Since S is symmetric, we are already orthogonal.
Now we unitize! $\mathbf{q}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right], \mathbf{q}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{q}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$.
7. Find an orthonormal matrix Q that diagonalizes $S=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0\end{array}\right]$.

Solution 7. By similar process to the above we get $\lambda_{1}=0, \lambda_{2}=3, \lambda_{3}=-3$ with $\mathbf{x}_{1}=\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$,
$\mathbf{x}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ -2\end{array}\right]$, and $\mathbf{x}_{3}=\left[\begin{array}{c}1 \\ -2 \\ -2\end{array}\right]$. These vectors normalized are $\mathbf{q}_{1}=\frac{1}{3}\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right], \mathbf{q}_{2}=\frac{1}{3}\left[\begin{array}{c}-2 \\ 1 \\ -2\end{array}\right]$, and
$\mathbf{q}_{3}=\frac{1}{3}\left[\begin{array}{c}1 \\ -2 \\ -2\end{array}\right]$. Thus,

$$
Q=\left[\begin{array}{ccc}
-2 / 3 & -2 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3 & -2 / 3 \\
1 / 3 & -2 / 3 & -2 / 3
\end{array}\right] .
$$

Check it!
8. Which of $S_{1}, S_{2}, S_{3}, S_{4}$ has positive eigenvalues? Use a test, don't compute the $\lambda^{\prime} s$.

$$
S_{1}=\left[\begin{array}{ll}
5 & 6 \\
6 & 7
\end{array}\right] \quad S_{2}=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -5
\end{array}\right] \quad S_{3}=\left[\begin{array}{cc}
1 & 10 \\
10 & 100
\end{array}\right] \quad S_{4}=\left[\begin{array}{cc}
1 & 10 \\
10 & 101
\end{array}\right]
$$

Solution 8. Not S_{1} since the determinant is negative.
Not S_{2} since the upper left value is negative.
Not S_{3} since the determinant is 0 .
S_{4} is since the upper left is positive and so is its determinant.
9. Compute the upper left determinants of S to establish positive definiteness. Verify that their ratios give the second and third pivots.

$$
S=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right]
$$

Solution 9. The uppermost determinant is 2 . The 2 by 2 determinant is $10-4=6$. The full
matrix has the determinant $2(40-9)-2(16-0)=62-32=30$. Thus, S is positive definite.
Reduced S is $\left[\begin{array}{lll}2 & 2 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 5\end{array}\right]$

We see that $6 / 2=3$ and $30 / 6=5$ which are the second and third pivots.

