Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 15th. Show all work to receive full credit.

1 Chapter 6

1. Find the eigenvalues and eigenvectors of these four matrices:

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right] & B=\left[\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right] \\
C=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] & D=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
\end{array}
$$

2. If A has $\lambda_{1}=4$ and $\lambda_{2}=5$ then $\operatorname{det}(A-\lambda I)=(\lambda-4)(\lambda-5)=\lambda^{2}-9 \lambda+20$. Find three matrices that have trace $a+d=9$ and determinant 20 and $\lambda=4,5$.
3. Factor these two matrices into $A=X \Lambda X^{-1}$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \quad A=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]
$$

4. Write down the most general matrix that has eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right] .\left(\right.$ Hint: Use $\left.X \Lambda X^{-1}\right)$
5. The rabbit population shows fast growth (from 6r) but loss to wolves (from -2 w). The wolf population always grows in this model:

$$
\frac{d r}{d t}=6 r-2 w \quad \text { and } \quad \frac{d w}{d t}=2 r+w
$$

Find the eigenvalues and eigenvectors. If $r(0)=w(0)=30$ what are the populations at time t ? After a long time, what is the ratio of rabbits to wolves?
6. Find the eigenvalues and the unit eigenvectors of $S=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0\end{array}\right]$.(Hint: Use the fact that S is symmetric.)
7. Find an orthonormal matrix Q that diagonalizes $S=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0\end{array}\right]$.
8. Which of $S_{1}, S_{2}, S_{3}, S_{4}$ has positive eigenvalues? Use a test, don't compute the $\lambda^{\prime} s$.

$$
S_{1}=\left[\begin{array}{ll}
5 & 6 \\
6 & 7
\end{array}\right] \quad S_{2}=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -5
\end{array}\right] \quad S_{3}=\left[\begin{array}{cc}
1 & 10 \\
10 & 100
\end{array}\right] \quad S_{4}=\left[\begin{array}{cc}
1 & 10 \\
10 & 101
\end{array}\right]
$$

9. Compute the upper left determinants of S to establish positive definiteness. Verify that their ratios give the second and third pivots.

$$
S=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right]
$$

