Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 8th. Show all work to receive full credit.

1 Chapter 5

1. If a 4×4 matrix has determinant $\operatorname{det}(A)=\frac{1}{2}$, find $\operatorname{det}(2 A), \operatorname{det}(-A), \operatorname{det}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{-1}\right)$.

Solution 1. $\operatorname{det}(2 A)=2^{4} \operatorname{det}(A)=8, \operatorname{det}(-A)=(-1)^{4} \operatorname{det}(A)=1 / 2, \operatorname{det}\left(A^{2}\right)=\operatorname{det}(A) \operatorname{det}(A)=$ $1 / 4$ and $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)=2$.
2. True or false, with reason if true or a counterexample if false:
a. The determinant of $I+A$ is $1+\operatorname{det}(A)$.

Solution 2. $\operatorname{det}(I+I) \neq 2$
b. The determinant of $A B C$ is $|A||B \| C|$.

Solution 3. True. $\operatorname{det}(A B C)=\operatorname{det}(A B) \operatorname{det}(C)=\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C)$.
c. The determinant of $4 A$ is $4|A|$.

Solution 4. False. $\operatorname{det}(4 A)=4^{n} \operatorname{det}(A)$ and the 4 in $4|A|$ only distributes to a row.
3. Reduce A to an upper triangular matrix and find $\operatorname{det}(A)$.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 3 \\
3 & 3 & 3
\end{array}\right]
$$

Solution 5. $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right] R_{2}-R_{1} \rightarrow R_{2}$ and $R_{3}-R_{1} \rightarrow R_{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2\end{array}\right] R_{3}-R_{2} \rightarrow R_{3}$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. Since it is upper triangular, $\operatorname{det}(A)=1$.
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3\end{array}\right] R_{2}-2 R_{1} \rightarrow R_{2}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -2 & -3 \\ 3 & 3 & 3\end{array}\right] R_{3}-3 R_{1} \rightarrow R_{3}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -2 & -3 \\ 0 & -3 & -6\end{array}\right] R_{3}-(3 / 2) R_{2} \rightarrow R_{3}$ $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -2 & -3 \\ 0 & 0 & -(3 / 2)\end{array}\right]$. Since it is upper triangular, $\operatorname{det}(A)=3$.
4. Compute the determinants of A and B. Are their columns independent?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Solution 6. $\left|\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right|=\left|\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right|-\left|\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right|=-1-1=-2$. Thus, independent.
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] R_{2}-4 R_{1} \rightarrow R_{2}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9\end{array}\right] R_{3}-7 R_{1} \rightarrow R_{3}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12\end{array}\right] R_{3}-2 R_{2} \rightarrow R_{3}$ $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0\end{array}\right]$. means the columns are not independent.
5. The $n \mathrm{x} n$ determinant C_{n} has $1^{\prime} s$ above and below the main diagonal: $C_{1}=|0|, C_{2}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|$, $C_{3}=\left|\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right|, C_{4}=\left|\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right|$
a. What are these determinants $C_{1}, C_{2}, C_{3}, C_{4}$? $C_{1}=0, C_{2}=-1, C_{3}=-\left|\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right|=0$, and $C_{4}=-\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right|=-\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-C_{2}=1$
b. By cofactors find the relation between C_{n} and C_{n-1} and C_{n-2}. Find C_{10}.

Solution 7. $C_{n}=-C_{n-2}$. Thus, $C_{10}=-C_{8}=C_{6}=-C_{4}=C_{2}=-1$.
6. Solve these linear equations by Cramer's Rule:
a.

$$
\begin{aligned}
2 x+5 y & =1 \\
x+4 y & =2
\end{aligned}
$$

Solution 8. $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 4\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
$B_{1}=\left[\begin{array}{ll}1 & 5 \\ 2 & 4\end{array}\right]$ and $B_{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
$\operatorname{det}(A)=3, \operatorname{det}\left(B_{1}\right)=-6$, and $\operatorname{det}\left(B_{2}\right)=3$. Thus, $x=-6 / 3=-2$ and $y=3 / 3=1$.
b.

$$
\begin{aligned}
2 x+y & =1 \\
x+2 y+z & =0 \\
y+2 z & =0
\end{aligned}
$$

Solution 9. $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
$B_{1}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right], B_{2}=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2\end{array}\right]$, and $B_{3}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 0\end{array}\right]$.
$\operatorname{det}(A)=2\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|-\left|\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right|=6-2=4, \operatorname{det}\left(B_{1}\right)=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=3, \operatorname{det}\left(B_{2}\right)=-\left|\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right|=-2$, and $\operatorname{det}\left(B_{3}\right)=\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right|=1$. Thus, $x=3 / 4, y=-1 / 2$, and $z=1 / 4$.
7. Find A^{-1} form the cofactor formula $C^{T} / \operatorname{det}(A)$.
a. $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 7 & 1\end{array}\right]$
b. $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$

Solution 10. We will just list the cofactors to save space.
$C_{11}=3, C_{12}=0, C_{13}=0, C_{21}=-2, C_{22}=1, C_{23}=-7, C_{31}=0, C_{32}=0, C_{33}=3$.
Thus, $C=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & 1 & -7 \\ 0 & 0 & 3\end{array}\right] \Rightarrow C^{T}=\left[\begin{array}{ccc}3 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & -7 & 3\end{array}\right] . \operatorname{det}(A)=\left|\begin{array}{ll}3 & 0 \\ 7 & 1\end{array}\right|=3$. Thus, $A^{-1}=$

$$
\left[\begin{array}{ccc}
1 & -2 / 3 & 0 \\
0 & 1 / 3 & 0 \\
0 & -7 / 3 & 1
\end{array}\right]
$$

Now for b .

$$
\begin{aligned}
& C_{11}=3, C_{12}=2, C_{13}=1, C_{21}=2, C_{22}=4, C_{23}=2, C_{31}=1, C_{32}=2, C_{33}=3 . \text { Thus, } \\
& C=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right] \Rightarrow C^{T}=\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right] \cdot \operatorname{det}(A)=2\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|+\left|\begin{array}{cc}
-1 & -1 \\
0 & 2
\end{array}\right|=6-2=4 . \text { Thus, } \\
& A^{-1}=\left[\begin{array}{ccc}
3 / 4 & 1 / 2 & 1 / 4 \\
1 / 2 & 1 & 1 / 2 \\
1 / 4 & 1 / 2 & 3 / 4
\end{array}\right] .
\end{aligned}
$$

8. Find the cofactors of A and multiply $A C^{T}$ to find $\operatorname{det}(A)$:

$$
A=\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{ccc}
6 & -3 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]
$$

If you change that 4 to 100 , why is $\operatorname{det}(A)$ unchanged?
Solution 11. $C_{21}=3, C_{22}=1, C_{23}=-1, C_{31}=-6, C_{32}=2, C_{33}=1$. Thus, $C=$ $\left[\begin{array}{ccc}6 & -3 & 0 \\ 3 & 1 & -1 \\ -6 & 2 & 1\end{array}\right] \Rightarrow C^{T}=\left[\begin{array}{ccc}6 & 3 & -6 \\ -3 & 1 & 2 \\ 0 & -1 & 1\end{array}\right]$.
$A C^{T}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]=\operatorname{det}(A) I \Rightarrow \operatorname{det}(A)=3$. The determinant remains unchanged nomatter what is in the 4 spot because the cofactor is always 0 !
9. a. Find the area of the parallelogram with edges $\mathbf{v}=(3,2)$ and $\mathbf{w}=(1,4)$.

Solution 12. We show a generalization by triangles! If we assume one end point of the parallelogram is $(0,0)$, then the vectors are the coordinates of two other points. Since the line connecting the two end points of the vector bisects the area of the parallelogram we get that $\operatorname{Area}($ parallelogram $)=\operatorname{det}\left(\left[v_{1}, v_{2}\right]\right)$. Thus, Area $=\left|\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right|=10$.
b. Find the area of the triangle with sides \mathbf{v}, \mathbf{w}, and $\mathbf{v}+\mathbf{w}$. Draw it.

Solution 13. Area $=(1 / 2)\left|\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right|=5$. Drawing is hard to type, but please ask me if this is a question.
10. A box has edges from $(0,0,0)$ to $(3,1,1)$ and $(1,3,1)$ and $(1,1,3)$. Find its volume.

Solution 14. Volume $=((3,1,1) \times(1,3,1)) \cdot(1,1,3)=\left|\begin{array}{lll}1 & 1 & 3 \\ 3 & 1 & 1 \\ 1 & 3 & 1\end{array}\right|=\left|\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right|-\left|\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right|+3\left|\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right|=$ $-2-2+24=20$.
11. Find $\mathbf{u} \times \mathbf{v}$ when $\mathbf{u}=(1,1,1)$ and $\mathbf{v}=(5,-1,7)$.

Solution 15. $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}i & j & k \\ 1 & 1 & 1 \\ 5 & -1 & 7\end{array}\right|=i\left|\begin{array}{cc}1 & 1 \\ -1 & 7\end{array}\right|-j\left|\begin{array}{cc}1 & 1 \\ 5 & 7\end{array}\right|+k\left|\begin{array}{cc}1 & 1 \\ 5 & -1\end{array}\right|=8 i-2 j-6 k$. Thus, the cross product is the vector $(8,-2,-6)$.

