Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 8th. Show all work to receive full credit.

1 Chapter 5

1. If a 4×4 matrix has determinant $\operatorname{det}(A)=\frac{1}{2}$, find $\operatorname{det}(2 A), \operatorname{det}(-A), \operatorname{det}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{-1}\right)$.
2. True or false, with reason if true or a counterexample if false:
a. The determinant of $I+A$ is $1+\operatorname{det}(A)$.
b. The determinant of $A B C$ is $|A||B \| C|$.
c. The determinant of $4 A$ is $4|A|$.
3. Reduce A to an upper triangular matrix and find $\operatorname{det}(A)$.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 3 \\
3 & 3 & 3
\end{array}\right]
$$

4. Compute the determinants of A and B. Are their columns independent?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

5. The $n \mathrm{x} n$ determinant C_{n} has $1^{\prime} s$ above and below the main diagonal: $C_{1}=|0|, C_{2}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|$, $C_{3}=\left|\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right|, C_{4}=\left|\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right|$
a. What are these determinants $C_{1}, C_{2}, C_{3}, C_{4}$?
b. By cofactors find the relation between C_{n} and C_{n-1} and C_{n-2}. Find C_{10}.
6. Solve these linear equations by Cramer's Rule:
a.

$$
\begin{aligned}
2 x+5 y & =1 \\
x+4 y & =2
\end{aligned}
$$

b.

$$
\begin{array}{r}
2 x+y=1 \\
x+2 y+z=0 \\
y+2 z=0
\end{array}
$$

7. Find A^{-1} form the cofactor formula $C^{T} / \operatorname{det}(A)$.
a. $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 7 & 1\end{array}\right]$
b. $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
8. Find the cofactors of A and multiply $A C^{T}$ to find $\operatorname{det}(A)$:

$$
A=\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{ccc}
6 & -3 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]
$$

If you change that 4 to 100 , why is $\operatorname{det}(A)$ unchanged?
9. a. Find the area of the parallelogram with edges $\mathbf{v}=(3,2)$ and $\mathbf{w}=(1,4)$.
b. Find the area of the triangle with sides \mathbf{v}, \mathbf{w}, and $\mathbf{v}+\mathbf{w}$. Draw it.
10. A box has edges from $(0,0,0)$ to $(3,1,1)$ and $(1,3,1)$ and $(1,1,3)$. Find its volume.
11. Find $\mathbf{u} \times \mathbf{v}$ when $\mathbf{u}=(1,1,1)$ and $\mathbf{v}=(5,-1,7)$.

