Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 1st. Show all work to receive full credit.

1 Rest of Chapter 3

1. Find a basis and the dimension for each of the four subspaces associated with the following matrices.

a. $A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$

Solution 1. First we find column space! $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} R_2 - R_1 \rightarrow R_1 \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ $R_1 - R_3 \rightarrow R_3 \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_2 - 4R_1 \rightarrow R_2 \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Thus the column space

is generated by 2 vectors and a basis is column 2 and column 4. Row space is 2 also seen from the reduction. A basis is row 1 and 2. Now we work on the null spaces. Given the reduction, there are 3 free variables; x_1 , x_3 , and x_5 . Thus, we get the special solutions to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

be $\begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \end{vmatrix}$, $\begin{vmatrix} -2 \\ 1 \\ 0 \\ 0 \end{vmatrix}$, $\begin{vmatrix} -2 \\ 0 \\ -2 \\ 0 \end{vmatrix}$. These generate the null space and give dimension 3. The left null

space we reduce the transpose of the original matrix.

(0	0	0		1	1	0			1	1	0		
	1	1	0		3	4	1			0	1	1		
	2	2	0	By obvious manipulation,	4	6	2	$R_2 - 3R_1 \rightarrow$	R_2	4	6	2	$R_3 - 4R_1 \to R_3$	
	3	4	1		0	0	0			0	0	0		
4	4	6	2		0	0	0			0	0	0		
[1	1	0		[1	1	(- Fi						
(0	1	1		0	1	1							
(0	2	2	By obvious manipulation,	0	0	(Thus, 2 pi	ivots	an	d a	fre	e variable. The	
(0	0	0		0	0	(
[0	0	0		0	0	(
fre	free variable is y_2 . This gives the generating vector $\begin{bmatrix} -1\\ 1\\ -1 \end{bmatrix}$.													

b.
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 5 & 8 \end{bmatrix}$$

Solution 2. Let's reduce! $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 5 & 8 \end{bmatrix} R_2 - 2R_1 \rightarrow R_2 \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix} R_1 - 2R_2 \rightarrow R_1$

 $\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}$. Thus, we have a column space with dimension 2 and generated by the first 2 columns. The row space is going to be 2 since no rows turned to 0's. Thus, generated by the only 2 rows. We have one free variable, x_3 , which gives us the null space generator $\begin{bmatrix} -4 \\ 0 \end{bmatrix}$. The left null space will have only the 0 vector since the row space is full.

1

2. Let
$$V = \left(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right).$$

a. Find a matrix A that has V as its row space .

Solution 3.
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

b. Find a matrix B that has V as its nullspace.

Solution 4. $B = \begin{bmatrix} -1 & 2 & -1 \\ -2 & 4 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ This was created since the following had to be true: $a_{11} + a_{12} + a_{13} = 0$ and $2a_{11} + a_{12} = 0$.

c. Find AB.

Solution 5.
$$AB = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 & -1 \\ -2 & 4 & -2 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 6 & -3 \\ -4 & 8 & -4 \end{bmatrix}.$$

2 Chapter 4

1. If **P** is the plane of vectors in \mathbb{R}^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$, write a basis for \mathbf{P}^{\perp} (The orthogonal complement of P). Construct a matrix with **P** as its nullspace.

Solution 6. A basis for
$$\mathbf{P}^{\perp}$$
 is $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$. Any matrix with the correct dimensions and 1's in every

position has this null space.

2. Suppose A is the 4 x 4 identity matrix without its last column. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. What is the projection matrix, P?

Solution 7.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. We now find $\hat{\mathbf{x}}$. $A^T A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $A^T \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Since the identity has inverse identity, $\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Thus, $\mathbf{p} = A\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$. $P = A(A^T A)^{-1}A^T = AA^T = I_4$

with a zero in the last diagonal spot..

- 3. What is the orthogonal complement of $S = span\left(\begin{bmatrix} 1\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\1\\-1\end{bmatrix}\right)$? **Solution 8.** This implies we want all **x** such that $\begin{bmatrix} 1 & 1 & 1\\1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$. By row reducing, we get $\begin{bmatrix} 1 & 1 & 0\\0 & 0 & 1 \end{bmatrix}$. Thus, x_2 is free and we get special solution $\begin{bmatrix} -1\\1\\0\\0\end{bmatrix}$. The space generated or spanned by this vector is the orthogonal complement.
- 4. Project **b** onto the line throught **a**. Check that **e** (the error) is perpendicular to **a**.

a.
$$\mathbf{b} = \begin{bmatrix} 1\\2\\2 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Solution 9.
$$\mathbf{p} = \hat{\mathbf{x}} \mathbf{a} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a} = \frac{5}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix}. \quad \mathbf{e} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} 1\\2\\2 \end{bmatrix} - \frac{5}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/3\\1/3\\1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -2\\1\\1 \end{bmatrix}.$$

$$\mathbf{e} \cdot \mathbf{a} = \frac{-10}{9} + \frac{5}{9} + \frac{5}{9} = 0$$

b.
$$\mathbf{b} = \begin{bmatrix} 1\\3\\1 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} -1\\-3\\-1 \end{bmatrix}.$$

Solution 10.
$$\mathbf{p} = \hat{\mathbf{x}} \mathbf{a} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a} = \begin{bmatrix} 1\\3\\1 \end{bmatrix}. \quad \mathbf{e} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} 1\\3\\1 \end{bmatrix} - \begin{bmatrix} 1\\3\\1 \end{bmatrix} = \mathbf{0}. \quad \mathbf{e} \cdot \mathbf{a} = \frac{-10}{9} + \frac{5}{9} + \frac{5}{9} = 0.$$

Clearly **e** is perpendicular to **a**.

5. In both of the above, find the projection matrix P and find the project \mathbf{p} .

Solution 11. $P_1 = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix}$. $P_2 = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}} = \frac{1}{11} \begin{bmatrix} 1 & 3 & 1\\ 3 & 9 & 3\\ 1 & 3 & 1 \end{bmatrix}$.

6. Project **b** onto the column space of A by solving $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ and $\mathbf{p} = A \hat{\mathbf{x}}$.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 4 \\ 6 \end{bmatrix}$$

Solution 12. $A^T A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}.$

$$A^T \mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 14 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 1 & 3 & 14 \end{bmatrix} R_2 - R_1 \rightarrow R_2 \begin{bmatrix} 1 & 1 & 4 \\ 0 & 2 & 10 \end{bmatrix} R_2/2 \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} R_1 - R_2 \rightarrow R_1 \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 5 \end{bmatrix}.$$
 Thus,

$$\hat{\mathbf{x}} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}. \mathbf{p} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 5 \end{bmatrix}.$$

7. What linear combination of (1,2,-1) and (1,0,1) is closest to $\mathbf{b} = (2,1,1)$?

Solution 13.
$$\begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
. Transpose both sides:
$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
Now simplify and solve.
$$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
.
$$\begin{bmatrix} 4 & 0 & 3 \\ 0 & 2 & 3 \end{bmatrix} R_1/4, R_2/2$$
 gives the solution, $\mathbf{x} = \begin{bmatrix} 3/4 \\ 3/2 \end{bmatrix}$.

8. Find the line of best fit for the points (0,1), (1,5), (3,13), (4,17). Do any of these points lie on the line?

Solution 14.

$$1 = m(0) + b$$

$$5 = m(1) + b$$

$$13 = m(3) + b$$

$$17 = m(4) + b$$

Matrix form: $\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix}$. Transpose both sides since no line goes through all of the

points.

$$\begin{bmatrix} 26 & 8 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 112 \\ 36 \end{bmatrix}$$
$$\begin{bmatrix} 26 & 8 & 112 \\ 8 & 4 & 36 \end{bmatrix} R_1 - 2R_2 \to R_1 \begin{bmatrix} 10 & 0 & 40 \\ 8 & 4 & 36 \end{bmatrix} R_1 / 10, R_2 / 4 \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 9 \end{bmatrix} R_2 - 2R_1 \to R_2 \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \end{bmatrix}$$

Thus, the best fit line is y = 4x + 1.

9. Find the closest parabola to the points (0,1), (1,5), (3,13), (4,17). Do any of these points lie on the parabola?

Solution 15.

$$1 = a(0)^{2} + b(0) + c$$

$$5 = a(1)^{2} + b(1) + c$$

$$13 = a(3)^{2} + b(3) + c$$

$$17 = a(4)^{2} + b(4) + c$$

Matrix form: $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 9 & 3 & 1 \\ 16 & 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix}$. Transpose both sides since the matrix is not square. $\begin{bmatrix} 16 & 4 & 1 \end{bmatrix}^{--} & \lfloor 1^{\prime} \rfloor \\ \begin{bmatrix} 338 & 92 & 26 \\ 92 & 26 & 8 \\ 26 & 8 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 394 \\ 112 \\ 36 \end{bmatrix}$ Now we solve. $\begin{bmatrix} 338 & 92 & 26 & 394 \\ 92 & 26 & 8 & 112 \\ 26 & 8 & 4 & 36 \end{bmatrix} R_2 - 2R_3 \rightarrow R_2 \begin{bmatrix} 338 & 92 & 26 & 394 \\ 40 & 10 & 0 & 40 \\ 26 & 8 & 4 & 36 \end{bmatrix} R_2 / 10R_3 / 2, R_1 / 2 \begin{bmatrix} 169 & 46 & 13 & 197 \\ 4 & 1 & 0 & 4 \\ 13 & 4 & 2 & 18 \end{bmatrix}$ $R_3 - 4R_2 \rightarrow R_3 \begin{bmatrix} 169 & 46 & 13 & 197 \\ 4 & 1 & 0 & 4 \\ -3 & 0 & 2 & 2 \end{bmatrix} R_1 - 46R_2 \rightarrow R_1 \begin{bmatrix} -15 & 0 & 13 & 13 \\ 4 & 1 & 0 & 4 \\ -3 & 0 & 2 & 2 \end{bmatrix}$ $R_1 - (13/2)R_3 \rightarrow R_1 \begin{bmatrix} 9/2 & 0 & 0 & 0 \\ 4 & 1 & 0 & 4 \\ -3 & 0 & 2 & 2 \end{bmatrix} 2/9R_1 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 4 \\ -3 & 0 & 2 & 2 \end{bmatrix} R_2 - 4R_1 \rightarrow R_2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ -3 & 0 & 2 & 2 \end{bmatrix}$ $R_3 + 3R_1 \to R_3 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 2 & 2 \end{bmatrix} R_3/2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$ Thus, the parabola is actually the line

y = 4x + 1.

10. Find the closest cubic to the points (0,1), (1,5), (3,13), (4,17). Do any of these points lie on the cubic?

Solution 16. Matrix form: $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 27 & 9 & 3 & 1 \\ 64 & 16 & 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix}$. We can get an exact solution this

time since the dimensions match!

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 5 \\ 27 & 9 & 3 & 1 & 13 \\ 64 & 16 & 4 & 1 & 17 \end{bmatrix} R_2 - R_1 \rightarrow R_2 \text{ Rep for all rows} \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 4 \\ 27 & 9 & 3 & 0 & 12 \\ 64 & 16 & 4 & 0 & 16 \end{bmatrix}$$

$$R_4 - 4R_2 \rightarrow R_4 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 4 \\ 27 & 9 & 3 & 0 & 12 \\ 60 & 12 & 0 & 0 & 0 \end{bmatrix} R_3 - 9R_2 \rightarrow R_3 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 4 \\ 18 & 0 & -6 & 0 & -24 \\ 60 & 12 & 0 & 0 & 0 \end{bmatrix} R_4 / 12.R_3 / 6$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 4 \\ 3 & 0 & -1 & 0 & -4 \\ 5 & 1 & 0 & 0 & 0 \end{bmatrix} R_2 + R_3 \rightarrow R_2 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 4 & 1 & 0 & 0 & 0 \\ 3 & 0 & -1 & 0 & -4 \\ 5 & 1 & 0 & 0 & 0 \end{bmatrix} R_4 - R_2 \rightarrow R_4 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -4 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} R_2 - 4R_4 \rightarrow R_2 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -4 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} R_2 - 4R_4 \rightarrow R_2 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -4 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\text{Swap } R_1 \text{ and } R_4$$

$$\text{and } -R_3 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} . \text{ Thus, } y = 4x + 1.$$

11. Find an orthonormal basis for the column space of A given:

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} -4 \\ -3 \\ 3 \\ 0 \end{bmatrix}.$$

Solution 17. $\mathbf{q}_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$

$$\mathbf{v}_{2}' = \mathbf{v}_{2} - \frac{\mathbf{q}_{1}^{T} \mathbf{v}_{2}}{\mathbf{q}_{1}^{T} \mathbf{q}_{1}} \mathbf{q}_{1} = \begin{bmatrix} -2\\0\\1\\3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -5/2\\-1/2\\1/2\\5/2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -5\\-1\\1\\5 \end{bmatrix}$$
$$\mathbf{q}_{2} = \frac{1}{2\sqrt{52}} \begin{bmatrix} -5\\-1\\1\\5 \end{bmatrix}. \text{ Check it!}$$

12. Find the projection of \mathbf{b} onto the column space above.

Solution 18. We find $\hat{\mathbf{x}}$ first. $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ -2 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -2 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} -4 \\ -3 \\ 3 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 4 & 2 & -4 \\ 2 & 14 & 11 \end{bmatrix} R_1/2 \begin{bmatrix} 2 & 1 & -2 \\ 2 & 14 & 11 \end{bmatrix} R_2 - R_1 \rightarrow R_2 \begin{bmatrix} 2 & 1 & -2 \\ 0 & 13 & 13 \end{bmatrix} R_2/13 \begin{bmatrix} 2 & 1 & -2 \\ 0 & 1 & 1 \end{bmatrix} R_1 - R_2 \rightarrow$$

$$R_1 \begin{bmatrix} 2 & 0 & -3 \\ 0 & 1 & 1 \end{bmatrix} R_1/2 \begin{bmatrix} 1 & 0 & -3/2 \\ 0 & 1 & 1 \end{bmatrix}. \text{ Thus, } \hat{\mathbf{x}} = \begin{bmatrix} -3/2 \\ 1 \end{bmatrix}. \text{ Now we find } \mathbf{p}.$$

$$\mathbf{p} = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -3/2 \\ 1 \end{bmatrix} = \begin{bmatrix} -7/2 \\ -3/2 \\ -1/2 \\ 3/2 \end{bmatrix}.$$