Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 1st. Show all work to receive full credit.

1 Rest of Chapter 3

1. Find a basis and the dimension for each of the four subspaces associated with the following matrices.
a. $A=\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$

Solution 1. First we find column space! $\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2\end{array}\right] R_{2}-R_{1} \rightarrow R_{1}\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$ $R_{1}-R_{3} \rightarrow R_{3}\left[\begin{array}{ccccc}0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] R_{2}-4 R_{1} \rightarrow R_{2}\left[\begin{array}{ccccc}0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Thus the column space is generated by 2 vectors and a basis is column 2 and column 4 . Row space is 2 also seen from the reduction. A basis is row 1 and 2 . Now we work on the null spaces. Given the reduction, there are 3 free variables; x_{1}, x_{3}, and x_{5}. Thus, we get the special solutions to be $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 0 \\ -2 \\ 1\end{array}\right]$. These generate the null space and give dimension 3. The left null space we reduce the transpose of the original matrix.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
2 & 2 & 0 \\
3 & 4 & 1 \\
4 & 6 & 2
\end{array}\right] \text { By obvious manipulation, }\left[\begin{array}{lll}
1 & 1 & 0 \\
3 & 4 & 1 \\
4 & 6 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] R_{2}-3 R_{1} \rightarrow R_{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
4 & 6 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] R_{3}-4 R_{1} \rightarrow R_{3}} \\
& {\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { By obvious manipulation, }\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { Thus, } 2 \text { pivots and a free variable. The }}
\end{aligned}
$$

free variable is y_{2}. This gives the generating vector $\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right]$.
b. $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 5 & 8\end{array}\right]$

Solution 2. Let's reduce! $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 5 & 8\end{array}\right] R_{2}-2 R_{1} \rightarrow R_{2}\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 0\end{array}\right] R_{1}-2 R_{2} \rightarrow R_{1}$ $\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 0\end{array}\right]$.Thus, we have a column space with dimension 2 and generated by the first 2 columns. The row space is going to be 2 since no rows turned to 0's. Thus, generated by the only 2 rows. We have one free variable, x_{3}, which gives us the null space generator $\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right]$. The left null space will have only the 0 vector since the row space is full.
2. Let $V=\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right)$.
a. Find a matrix A that has V as its row space.

Solution 3. $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 0\end{array}\right]$
b. Find a matrix B that has V as its nullspace.

Solution 4. $B=\left[\begin{array}{ccc}-1 & 2 & -1 \\ -2 & 4 & -2 \\ 0 & 0 & 0\end{array}\right]$ This was created since the following had to be true: $a_{11}+a_{12}+a_{13}=0$ and $2 a_{11}+a_{12}=0$.
c. Find $A B$.

Solution 5. $A B=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & -1 \\ -2 & 4 & -2 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}-3 & 6 & -3 \\ -4 & 8 & -4\end{array}\right]$.

2 Chapter 4

1. If \mathbf{P} is the plane of vectors in \mathbb{R}^{4} satisfying $x_{1}+x_{2}+x_{3}+x_{4}=0$, write a basis for \mathbf{P}^{\perp} (The orthogonal complement of P). Construct a matrix with \mathbf{P} as its nullspace.

Solution 6. A basis for \mathbf{P}^{\perp} is $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. Any matrix with the correct dimensions and 1 's in every position has this null space.
2. Suppose A is the 4×4 identity matrix without its last column. Project $\mathbf{b}=(1,2,3,4)$ onto the column space of A. What is the projection matrix, P ?

Solution 7. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. We now find $\widehat{\mathbf{x}} . A^{T} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A^{T} \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Since the identity has inverse identity, $\widehat{\mathbf{x}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Thus, $\mathbf{p}=A \widehat{\mathbf{x}}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right] . P=A\left(A^{T} A\right)^{-1} A^{T}=A A^{T}=I_{4}$ with a zero in the last diagonal spot..
3. What is the orthogonal complement of $S=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)$?

Solution 8. This implies we want all x such that $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. By row reducing, we get $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Thus, x_{2} is free and we get special solution $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$. The space generated or spanned by this vector is the orthogonal complement.
4. Project \mathbf{b} onto the line throught \mathbf{a}. Check that \mathbf{e} (the error) is perpendicular to a.
a. $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ and $\mathbf{a}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Solution 9. $\mathbf{p}=\widehat{\mathbf{x}} \mathbf{a}=\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}=\frac{5}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] . \mathbf{e}=\mathbf{b}-\mathbf{p}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]-\frac{5}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$.
$\mathbf{e} \cdot \mathbf{a}=\frac{-10}{9}+\frac{5}{9}+\frac{5}{9}=0$
b. $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ and $\mathbf{a}=\left[\begin{array}{l}-1 \\ -3 \\ -1\end{array}\right]$.

Solution 10. $\mathbf{p}=\widehat{\mathbf{x}} \mathbf{a}=\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right] . \mathbf{e}=\mathbf{b}-\mathbf{p}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]=\mathbf{0} . \mathbf{e} \cdot \mathbf{a}=\frac{-10}{9}+\frac{5}{9}+\frac{5}{9}=0$. Clearly \mathbf{e} is perpendicular to \mathbf{a}.
5. In both of the above, find the projection matrix P and find the project \mathbf{p}.

Solution 11. $P_{1}=\frac{\mathbf{a a}^{T}}{\mathbf{a}^{T} \mathbf{a}}=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$. $P_{2}=\frac{\mathbf{a a}^{T}}{\mathbf{a}^{T} \mathbf{a}}=\frac{1}{11}\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1\end{array}\right]$.
6. Project \mathbf{b} onto the column space of A by solving $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$ and $\mathbf{p}=A \widehat{\mathbf{x}}$.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right]
$$

Solution 12. $A^{T} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$.
$A^{T} \mathbf{b}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}4 \\ 4 \\ 6\end{array}\right]=\left[\begin{array}{c}4 \\ 14\end{array}\right]$.
$\left[\begin{array}{ccc}1 & 1 & 4 \\ 1 & 3 & 14\end{array}\right] R_{2}-R_{1} \rightarrow R_{2}\left[\begin{array}{ccc}1 & 1 & 4 \\ 0 & 2 & 10\end{array}\right] R_{2} / 2\left[\begin{array}{ccc}1 & 1 & 4 \\ 0 & 1 & 5\end{array}\right] R_{1}-R_{2} \rightarrow R_{1}\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 5\end{array}\right]$. Thus,
$\widehat{\mathbf{x}}=\left[\begin{array}{c}-1 \\ 5\end{array}\right] \cdot \mathbf{p}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 5\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 5\end{array}\right]$.
7. What linear combination of $(1,2,-1)$ and $(1,0,1)$ is closest to $\mathbf{b}=(2,1,1)$?

Solution 13. $\left[\begin{array}{cc}1 & 1 \\ 2 & 0 \\ -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$. Transpose both sides: $\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 2 & 0 \\ -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$.
Now simplify and solve. $\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right] \mathbf{x}=\left[\begin{array}{l}3 \\ 3\end{array}\right] \cdot\left[\begin{array}{lll}4 & 0 & 3 \\ 0 & 2 & 3\end{array}\right] \quad R_{1} / 4, R_{2} / 2$ gives the solution, $\mathbf{x}=$ $\left[\begin{array}{l}3 / 4 \\ 3 / 2\end{array}\right]$.
8. Find the line of best fit for the points $(0,1),(1,5),(3,13),(4,17)$. Do any of these points lie on the line?

Solution 14.

$$
\begin{aligned}
1 & =m(0)+b \\
5 & =m(1)+b \\
13 & =m(3)+b \\
17 & =m(4)+b
\end{aligned}
$$

Matrix form: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]=\left[\begin{array}{c}1 \\ 5 \\ 13 \\ 17\end{array}\right]$. Transpose both sides since no line goes through all of the points.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
26 & 8 \\
8 & 4
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{c}
112 \\
36
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
26 & 8 & 112 \\
8 & 4 & 36
\end{array}\right] R_{1}-2 R_{2} \rightarrow R_{1}\left[\begin{array}{ccc}
10 & 0 & 40 \\
8 & 4 & 36
\end{array}\right] R_{1} / 10, R_{2} / 4\left[\begin{array}{lll}
1 & 0 & 4 \\
2 & 1 & 9
\end{array}\right] R_{2}-2 R_{1} \rightarrow R_{2}\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 1
\end{array}\right] .}
\end{aligned}
$$

Thus, the best fit line is $y=4 x+1$.
9. Find the closest parabola to the points $(0,1),(1,5),(3,13),(4,17)$. Do any of these points lie on the parabola?

Solution 15.

$$
\begin{aligned}
& 1=a(0)^{2}+b(0)+c \\
& 5=a(1)^{2}+b(1)+c \\
& 13=a(3)^{2}+b(3)+c \\
& 17=a(4)^{2}+b(4)+c \\
& \text { Matrix form: }\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
1 \\
5 \\
13 \\
17
\end{array}\right] \text {. Transpose both sides since the matrix is not square. } \\
& {\left[\begin{array}{ccc}
338 & 92 & 26 \\
92 & 26 & 8 \\
26 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
394 \\
112 \\
36
\end{array}\right] \text { Now we solve. }} \\
& {\left[\begin{array}{cccc}
338 & 92 & 26 & 394 \\
92 & 26 & 8 & 112 \\
26 & 8 & 4 & 36
\end{array}\right] R_{2}-2 R_{3} \rightarrow R_{2}\left[\begin{array}{cccc}
338 & 92 & 26 & 394 \\
40 & 10 & 0 & 40 \\
26 & 8 & 4 & 36
\end{array}\right] R_{2} / 10 R_{3} / 2, R_{1} / 2\left[\begin{array}{cccc}
169 & 46 & 13 & 197 \\
4 & 1 & 0 & 4 \\
13 & 4 & 2 & 18
\end{array}\right]} \\
& R_{3}-4 R_{2} \rightarrow R_{3}\left[\begin{array}{cccc}
169 & 46 & 13 & 197 \\
4 & 1 & 0 & 4 \\
-3 & 0 & 2 & 2
\end{array}\right] \quad R_{1}-46 R_{2} \rightarrow R_{1}\left[\begin{array}{cccc}
-15 & 0 & 13 & 13 \\
4 & 1 & 0 & 4 \\
-3 & 0 & 2 & 2
\end{array}\right] \\
& R_{1}-(13 / 2) R_{3} \rightarrow R_{1}\left[\begin{array}{cccc}
9 / 2 & 0 & 0 & 0 \\
4 & 1 & 0 & 4 \\
-3 & 0 & 2 & 2
\end{array}\right] 2 / 9 R_{1}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
4 & 1 & 0 & 4 \\
-3 & 0 & 2 & 2
\end{array}\right] R_{2}-4 R_{1} \rightarrow R_{2}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
-3 & 0 & 2 & 2
\end{array}\right] \\
& R_{3}+3 R_{1} \rightarrow R_{3}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 2 & 2
\end{array}\right] R_{3} / 2\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 1
\end{array}\right] \text {. Thus, the parabola is actually the line }
\end{aligned}
$$

$y=4 x+1$.
10. Find the closest cubic to the points $(0,1),(1,5),(3,13),(4,17)$. Do any of these points lie on the cubic?
Solution 16. Matrix form: $\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 27 & 9 & 3 & 1 \\ 64 & 16 & 4 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{c}1 \\ 5 \\ 13 \\ 17\end{array}\right]$. We can get an exact solution this time since the dimensions match!

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 5 \\
27 & 9 & 3 & 1 & 13 \\
64 & 16 & 4 & 1 & 17
\end{array}\right] R_{2}-R_{1} \rightarrow R_{2} \text { Rep for all rows }\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 4 \\
27 & 9 & 3 & 0 & 12 \\
64 & 16 & 4 & 0 & 16
\end{array}\right]} \\
& R_{4}-4 R_{2} \rightarrow R_{4}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 4 \\
27 & 9 & 3 & 0 & 12 \\
60 & 12 & 0 & 0 & 0
\end{array}\right] R_{3}-9 R_{2} \rightarrow R_{3}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 4 \\
18 & 0 & -6 & 0 & -24 \\
60 & 12 & 0 & 0 & 0
\end{array}\right] R_{4} / 12 . R_{3} / 6 \\
& {\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 4 \\
3 & 0 & -1 & 0 & -4 \\
5 & 1 & 0 & 0 & 0
\end{array}\right] R_{2}+R_{3} \rightarrow R_{2}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
4 & 1 & 0 & 0 & 0 \\
3 & 0 & -1 & 0 & -4 \\
5 & 1 & 0 & 0 & 0
\end{array}\right] R_{4}-R_{2} \rightarrow R_{4}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
4 & 1 & 0 & 0 & 0 \\
3 & 0 & -1 & 0 & -4 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{3}-3 R_{4} \rightarrow R_{3}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
4 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & -4 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad R_{2}-4 R_{4} \rightarrow R_{2}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & -4 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \text { Swap } R_{1} \text { and } R_{4} \\
& \text { and }-R_{3}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \text {. Thus, } y=4 x+1 \text {. }
\end{aligned}
$$

11. Find an orthonormal basis for the column space of A given:
$A=\left[\begin{array}{cc}1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-4 \\ -3 \\ 3 \\ 0\end{array}\right]$.
Solution 17. $\mathbf{q}_{1}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.

$$
\begin{aligned}
& \mathbf{v}_{2}^{\prime}=\mathbf{v}_{2}-\frac{\mathbf{q}_{1}^{T} \mathbf{v}_{2}}{\mathbf{q}_{1}^{T} \mathbf{q}_{1}} \mathbf{q}_{1}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
3
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
-1 / 2 \\
1 / 2 \\
5 / 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-5 \\
-1 \\
1 \\
5
\end{array}\right] \\
& \mathbf{q}_{2}=\frac{1}{2 \sqrt{52}}\left[\begin{array}{c}
-5 \\
-1 \\
1 \\
5
\end{array}\right] . \text { Check it! }
\end{aligned}
$$

12. Find the projection of \mathbf{b} onto the column space above.

Solution 18. We find $\widehat{\mathbf{x}}$ first. $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 1
\end{array} 1\right.} \\
& -2
\end{aligned} 0
$$

