Instructions: This homework is an individual effort. Answer each question. This is due on Monday, June 1st. Show all work to receive full credit.

1 Rest of Chapter 3

1. Find a basis and the dimension for each of the four subspaces associated with the following matrices.
a. $A=\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$
b. $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 5 & 8\end{array}\right]$
2. Let $V=\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right)$.
a. Find a matrix A that has V as its row space .
b. Find a matrix B that has V as its nullspace.
c. Find $A B$.

2 Chapter 4

1. If \mathbf{P} is the plane of vectors in \mathbb{R}^{4} satisfying $x_{1}+x_{2}+x_{3}+x_{4}=0$, write a basis for \mathbf{P}^{\perp} (The orthogonal complement of P). Construct a matrix with \mathbf{P} as its nullspace.
2. Suppose A is the 4×4 identity matrix without its last column. Project $\mathbf{b}=(1,2,3,4)$ onto the column space of A. What is the projection matrix, P ?
3. What is the orthogonal complement of $S=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)$?
4. Project \mathbf{b} onto the line throught \mathbf{a}. Check that \mathbf{e} (the error) is perpendicular to a.
a. $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ and $\mathbf{a}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
b. $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ and $\mathbf{a}=\left[\begin{array}{l}-1 \\ -3 \\ -1\end{array}\right]$.
5. In both of the above, find the projection matrix P and find the project \mathbf{p}.
6. Project \mathbf{b} onto the column space of A by solving $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$ and $\mathbf{p}=A \widehat{\mathbf{x}}$.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right]
$$

7. What linear combination of $(1,2,-1)$ and $(1,0,1)$ is closest to $\mathbf{b}=(2,1,1)$?
8. Find the line of best fit for the points $(0,1),(1,5),(3,13),(4,17)$. Do any of these points lie on the line?
9. Find the closest parabola to the points $(0,1),(1,5),(3,13),(4,17)$. Do any of these points lie on the parabola?
10. Find the closest cubic to the points $(0,1),(1,5),(3,13),(4,17)$. Do any of these points lie on the cubic?
11. Find an orthonormal basis for the column space of A given:

$$
A=\left[\begin{array}{cc}
1 & -2 \\
1 & 0 \\
1 & 1 \\
1 & 3
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-4 \\
-3 \\
3 \\
0
\end{array}\right]
$$

12. Find the projection of \mathbf{b} onto the column space above.
