Instructions: This homework is an individual effort. Answer each question. This is due on Monday, May 25 th. Show all work to receive full credit.

1 Rest of Chapter 2

1. Solve the system $L \mathbf{c}=\mathbf{b}$ to find \mathbf{c}. Then solve $U \mathbf{x}=\mathbf{c}$ to find \mathbf{x}.
a. $L=\left[\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right], U=\left[\begin{array}{ll}2 & 4 \\ 0 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}2 \\ 11\end{array}\right]$.
b. $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], U=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$.
2. Let P be the matrix with 1's on the antidiagonal (i.e. from the top right position to the bottom left position). Describe $P A P$.
3. Describe in words what the 5×5 permutation matrices would do to the matrix A.
a. $P=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$
b. $P=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$
c. $P=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
4. If $A=A^{T}$ and $B=B^{T}$, which are symmetric? Show work as to why or why not.
a. $A^{2}-B^{2}$
b. $(A+B)(A-B)$
c. $A B A B$

2 Chapter 3

1. Construct a 3×3 matrix whose column space contains $(1,1,0)$ and ($1,0,1$) but not ($1,1,1$). Then construct a 3×3 matrix whose column space is a line in \mathbb{R}^{3}.
2. If $S=C(A)$ and $T=C(B)$, then describe the matrix whose column space is $S+T$.
3. Construct a matrix whose column space contains $(1,1,1)$ and whose nullspace is the multiples of $(1,1,1,1)$.
4. What are the special solutions to $A \mathbf{x}=\mathbf{0}$ for the following matrices:

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 4 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } A=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

5. Find the complete solution $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{n}$ to $A \mathbf{x}=\mathbf{b}$:

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 4 & 4 & 8 \\
4 & 8 & 6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
2 \\
10
\end{array}\right]
$$

6. Show that $\left(b_{1}, b_{2}, b_{3}\right)$ is in the column space if $b_{3}-2 b_{2}+4 b_{1}=0$.

$$
A=\left[\begin{array}{lll}
1 & 3 & 1 \\
3 & 8 & 2 \\
2 & 4 & 0
\end{array}\right]
$$

7. Find the rank of the A and A^{T} depending on q.

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 1 & q
\end{array}\right]
$$

8. Find the largest possible number of independent vectors among:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{5}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{6}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]
$$

9. Find 3 different bases for the column space of $U=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right]$.
