Instructions: This homework is an individual effort. Answer each question. This is due on Monday, May 18 th. Show all work to receive full credit.

1 Chapter 1

1. Find the angle between the pairs of vectors.
a. $\mathbf{v}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Solution 1. $\cos \theta=\frac{\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]}{\|\mathbf{v}\|\|\mathbf{u}\|}=\frac{1}{2(1)}=\frac{1}{2}$
$\theta=\arccos (1 / 2)=\frac{\pi}{3}$ or $\frac{5 \pi}{3}$. Since both our vectors are in quadrant $1, \theta=\frac{\pi}{3}$.
b. $\mathbf{v}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$

Solution 2. $\mathbf{v} \cdot \mathbf{u}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]=4-2-2=0$. Thus, the two vectors are perpendicular and have $\theta=\frac{\pi}{2}$.
2. Let $\mathbf{v}=(1,1, \ldots, 1)$ be in \mathbb{R}^{3}. Find a unit vector in the same direction. Then find a unit vector perpendicular to \mathbf{v}.
Solution 3. $\mathbf{v}=(1,1,1) \in \mathbb{R}^{3} .\|\mathbf{v}\|=\sqrt{3}$. Thus, \mathbf{u}_{v} is the unit vector $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ in the same direction as \mathbf{v}.
We first find a vector perpendicular to \mathbf{v}. Say that is $\mathbf{w}=(1,0,-1)$. Now we unitize this to get $\mathbf{u}_{w}=\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)$.
3. Pick any numbers x, y, z such that $x+y+z=0$. Let \mathbf{v} be the vector (x, y, z) and \mathbf{w} be the vector (z, x, y). Find the angle between the two vectors. Find $\cos \theta$ for the two vectors. Then take different x, y, z and do the same. Explain the phenomenon.

Solution 4. This is the trickiest one! Take $\mathbf{v}=(1,-1,0)$. Then $\mathbf{w}=(0,1,-1) \cdot \mathbf{v} \cdot \mathbf{w}=-1$, $\|\mathbf{v}\|=\sqrt{2}$, and $\|\mathbf{w}\|=\sqrt{2}$. Thus, $\cos \theta=\frac{-1}{2}$. Repeat this as the question states and you will always get $\frac{-1}{2}$. Now we explain why.
$\cos \theta=\frac{x z+y x+z y}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x z+y x+z y}{x^{2}+y^{2}+z^{2}}=\frac{x z+y x+z y}{(x+y+z)(x+y+z)-2 x y-2 x z-2 y z}$ $x+y+z=0$ by the statement of the problem. Thus,
$\cos \theta=\frac{x z+y x+z y}{-2(x y+x z+y z)}=\frac{-1}{2}$.
4. Find a linear combination $x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+x_{3} \mathbf{w}_{3}=0$ with $x_{1}=1$,

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \mathbf{w}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

Solution 5. We can set up the following system and perform row operations on the augmented matrix!

$$
\begin{align*}
& {\left[\begin{array}{cccc}
1 & 4 & 7 & 0 \\
2 & 5 & 8 & 0 \\
3 & 6 & 9 & 0
\end{array}\right] 2 R_{1}-R_{2} \rightarrow R_{2}\left[\begin{array}{cccc}
1 & 4 & 7 & 0 \\
0 & 3 & 6 & 0 \\
3 & 6 & 9 & 0
\end{array}\right] 3 R_{1}-R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
1 & 4 & 7 & 0 \\
0 & 3 & 6 & 0 \\
0 & 6 & 12 & 0
\end{array}\right]} \\
& R_{2} / 3, R_{3} / 6\left[\begin{array}{cccc}
1 & 4 & 7 & 0 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] R_{2}-R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
1 & 4 & 7 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R_{1}-4 R_{2} \rightarrow R_{1}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& x_{1}-x_{3}=0 \tag{1}\\
& x_{2}+2 x_{3}=0 \tag{2}
\end{align*}
$$

Since $x_{1}=1,(1)$ tells me $x_{3}=1$ and (2) tells me $x_{2}=-2$. Thus, $\mathbf{x}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.

2 Chapter 2

1. Make the following system upper triangular with only 2 row operations:

$$
\begin{aligned}
2 x+3 y+z & =8 \\
4 x+7 y+5 z & =20 \\
-2 y+2 z & =0
\end{aligned}
$$

Solution 6. We will eliminate 4 and then -2 .

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 8 \\
4 & 7 & 5 & 20 \\
0 & -2 & 2 & 0
\end{array}\right] \quad R_{2}-2 R_{1} \rightarrow R_{2}\left[\begin{array}{cccc}
2 & 3 & 1 & 8 \\
0 & 1 & 3 & 4 \\
0 & -2 & 2 & 0
\end{array}\right] 2 R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
2 & 3 & 1 & 8 \\
0 & 1 & 3 & 4 \\
0 & 0 & 8 & 8
\end{array}\right]
$$

Thus, we now have the system

$$
\begin{aligned}
2 x+3 y+z & =8 \\
y+3 z & =4 \\
8 z & =8
\end{aligned}
$$

2. Use elimination to solve the following system:

$$
\begin{gathered}
A \mathbf{x}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 5 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right] . \\
\text { Solution 7. }\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
2 & 3 & 4 & 2 \\
3 & 5 & 7 & 6
\end{array}\right] 2 R_{1}-R_{2} \rightarrow R_{2}\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
0 & 1 & 2 & 0 \\
3 & 5 & 7 & 6
\end{array}\right] 3 R_{1}-R_{3} \rightarrow R_{3}\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & -3
\end{array}\right] \\
R_{3}-R_{2} \rightarrow R_{3}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
0
\end{gathered} 1
$$

3. Choose the numbers a, b, c, d such that the augmented matrix has:
a. No solution

Solution 8. Like above if $d=0$ and c is anything but 0 , this has no solutions regardless of a and b.
b. Infinite solutions

Solution 9. Opposite of above, if $d=0$ and $c=0$, this has infinite solutions regardless of a and b since we have a free variable x_{3} that can be anything.
c. one solution

Solution 10. If $d=1$ then this has a solution no matter what because x_{3} is fixed to the value of c.

$$
\left[\begin{array}{lll}
A & \mathbf{b}
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & a \\
0 & 4 & 5 & b \\
0 & 0 & d & c
\end{array}\right]
$$

4. Find A^{2}, A^{3}, and A^{4}.

$$
A=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solution 11. $A^{2}=\left[\begin{array}{llll}0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], A^{3}=\left[\begin{array}{llll}0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, and $A^{4}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
5. Write two 3×3 matrices with nonzero entries. Call them A and B. Find $A^{-1}, B^{-1}, A B, B A$, and $(A B)^{-1}$.

Solution 12. You may choose any but for simplicity I will choose the following:
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right]$.
Neither is invertible since the rows are all the same. This also means the product is not invertible. To invert, you should be using the elimination method from the lectures.

$$
A B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right]=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right]=B A
$$

