Instructions: This homework is an individual effort. Answer each question. This is due on Monday, May 18th. Show all work to receive full credit.

1 Chapter 1

1. Find the angle between the pairs of vectors.

a.
$$\mathbf{v} = \begin{bmatrix} 1\\ \sqrt{3} \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$
Solution 1. $\cos \theta = \frac{\begin{bmatrix} 1\\ \sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0 \end{bmatrix}}{||\mathbf{v}||||\mathbf{u}||} = \frac{1}{2(1)} = \frac{1}{2}$
 $\theta = \arccos(1/2) = \frac{\pi}{3}$ or $\frac{5\pi}{3}$. Since both our vectors are in quadrant 1, $\theta = \frac{\pi}{3}$.
b. $\mathbf{v} = \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix}$
Solution 2. $\mathbf{v} \cdot \mathbf{u} = \begin{bmatrix} 2\\ -1\\ 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix} = 4 - 2 - 2 = 0$. Thus, the two vectors are perpendicular and have $\theta = \frac{\pi}{2}$.

2. Let $\mathbf{v} = (1, 1, ..., 1)$ be in \mathbb{R}^3 . Find a unit vector in the same direction. Then find a unit vector perpendicular to \mathbf{v} .

Solution 3. $\mathbf{v} = (1, 1, 1) \in \mathbb{R}^3$. $||\mathbf{v}|| = \sqrt{3}$. Thus, \mathbf{u}_v is the unit vector $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ in the same direction as \mathbf{v} .

We first find a vector perpendicular to **v**. Say that is $\mathbf{w} = (1, 0, -1)$. Now we unitize this to get $\mathbf{u}_w = \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)$.

3. Pick any numbers x, y, z such that x + y + z = 0. Let **v** be the vector (x, y, z) and **w** be the vector (z, x, y). Find the angle between the two vectors. Find $\cos \theta$ for the two vectors. Then take different x, y, z and do the same. Explain the phenomenon.

Solution 4. This is the trickiest one! Take $\mathbf{v} = (1, -1, 0)$. Then $\mathbf{w} = (0, 1, -1)$. $\mathbf{v} \cdot \mathbf{w} = -1$, $||\mathbf{v}|| = \sqrt{2}$, and $||\mathbf{w}|| = \sqrt{2}$. Thus, $\cos \theta = \frac{-1}{2}$. Repeat this as the question states and you will always get $\frac{-1}{2}$. Now we explain why. $\cos \theta = \frac{xz + yx + zy}{\sqrt{x^2 + y^2 + z^2}\sqrt{x^2 + y^2 + z^2}} = \frac{xz + yx + zy}{x^2 + y^2 + z^2} = \frac{xz + yx + zy}{(x + y + z)(x + y + z) - 2xy - 2xz - 2yz}$

x + y + z = 0 by the statement of the problem. Thus,

$$\cos\theta = \frac{xz + yx + zy}{-2(xy + xz + yz)} = \frac{-1}{2}$$

4. Find a linear combination $x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + x_3\mathbf{w}_3 = 0$ with $x_1 = 1$,

$$\mathbf{w}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \mathbf{w}_3 = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$$

Solution 5. We can set up the following system and perform row operations on the augmented matrix!

$$\begin{bmatrix} 1 & 4 & 7 & 0 \\ 2 & 5 & 8 & 0 \\ 3 & 6 & 9 & 0 \end{bmatrix} 2R_1 - R_2 \to R_2 \begin{bmatrix} 1 & 4 & 7 & 0 \\ 0 & 3 & 6 & 0 \\ 3 & 6 & 9 & 0 \end{bmatrix} 3R_1 - R_3 \to R_3 \begin{bmatrix} 1 & 4 & 7 & 0 \\ 0 & 3 & 6 & 0 \\ 0 & 6 & 12 & 0 \end{bmatrix}$$
$$R_2/3, R_3/6 \begin{bmatrix} 1 & 4 & 7 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} R_2 - R_3 \to R_3 \begin{bmatrix} 1 & 4 & 7 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_1 - 4R_2 \to R_1 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$x_1 - x_3 = 0 \tag{1}$$

$$x_2 + 2x_3 = 0 (2)$$

Since $x_1 = 1$, (1) tells me $x_3 = 1$ and (2) tells me $x_2 = -2$. Thus, $\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

2 Chapter 2

1. Make the following system upper triangular with only 2 row operations:

$$2x + 3y + z = 8$$

$$4x + 7y + 5z = 20$$

$$-2y + 2z = 0.$$

Solution 6. We will eliminate 4 and then -2. $\begin{bmatrix} 2 & 3 & 1 & 8 \\ 4 & 7 & 5 & 20 \\ 0 & -2 & 2 & 0 \end{bmatrix} R_2 - 2R_1 \rightarrow R_2 \begin{bmatrix} 2 & 3 & 1 & 8 \\ 0 & 1 & 3 & 4 \\ 0 & -2 & 2 & 0 \end{bmatrix} 2R_2 + R_3 \rightarrow R_3 \begin{bmatrix} 2 & 3 & 1 & 8 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 8 & 8 \end{bmatrix}$ Thus, we now have the system

$$2x + 3y + z = 8$$
$$y + 3z = 4$$
$$8z = 8.$$

2. Use elimination to solve the following system:

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}.$$

Solution 7.
$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 2 \\ 3 & 5 & 7 & 6 \end{bmatrix} 2R_1 - R_2 \rightarrow R_2 \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 5 & 7 & 6 \end{bmatrix} 3R_1 - R_3 \rightarrow R_3 \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & -3 \end{bmatrix}$$
$$R_3 - R_2 \rightarrow R_3 \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$
Last row tells us that this system has no solutions since $0 \neq -3$.

- 3. Choose the numbers a, b, c, d such that the augmented matrix has:
 - a. No solution

Solution 8. Like above if d = 0 and c is anything but 0, this has no solutions regardless of a and b.

b. Infinite solutions

Solution 9. Opposite of above, if d = 0 and c = 0, this has infinite solutions regardless of a and b since we have a free variable x_3 that can be anything.

c. one solution

Solution 10. If d = 1 then this has a solution no matter what because x_3 is fixed to the value of c.

	[1	2	3	a
$[A \mathbf{b}] =$	0	4	5	b
	0	0	d	c

4. Find A^2 , A^3 , and A^4 .

5. Write two 3 x 3 matrices with nonzero entries. Call them A and B. Find A^{-1} , B^{-1} , AB, BA, and $(AB)^{-1}$.

Solution 12. You may choose any but for simplicity I will choose the following:

	1	1	1		-1	-1	-1	
A =	1	1	1	and $B =$	-1	-1	-1	
	1	1	1		-1	-1	-1	

Neither is invertible since the rows are all the same. This also means the product is not invertible. To invert, you should be using the elimination method from the lectures.