Instructions: This homework is an individual effort. Answer each question. This is due on Monday, May 18 th. Show all work to receive full credit.

1 Chapter 1

1. Find the angle between the pairs of vectors.
a. $\mathbf{v}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
b. $\mathbf{v}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$
2. Let $\mathbf{v}=(1,1, \ldots, 1)$ be in \mathbb{R}^{3}. Find a unit vector in the same direction. Then find a unit vector perpendicular to \mathbf{v}.
3. Pick any numbers x, y, z such that $x+y+z=0$. Let \mathbf{v} be the vector (x, y, z) and \mathbf{w} be the vector (z, x, y). Find the angle between the two vectors. Find $\cos \theta$ for the two vectors. Then take different x, y, z and do the same. Explain the phenomenon.
4. Find a linear combination $x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+x_{3} \mathbf{w}_{3}=0$ with $x_{1}=1$,

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \mathbf{w}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

2 Chapter 2

1. Make the following system upper triangular with only 2 row operations:

$$
\begin{align*}
2 x+3 y+z & =8 \tag{1}\\
4 x+7 y+5 z & =20 \tag{2}\\
-2 y+2 z & =0 \tag{3}
\end{align*}
$$

2. Use elimination to solve the following system:

$$
A \mathbf{x}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 5 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]
$$

3. Choose the numbers a, b, c, d such that the augmented matrix has:
a. No solution
b. Infinite solutions
c. one solution

$$
\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & a \\
0 & 4 & 5 & b \\
0 & 0 & d & c
\end{array}\right]
$$

4. Find A^{2}, A^{3}, and A^{4}.

$$
A=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

5. Write two 3×3 matrices with nonzero entries. Call them A and B. Find $A^{-1}, B^{-1}, A B, B A$, and $(A B)^{-1}$.
