Instructions: This exam is closed book, closed note, and an individual effort. Electronic devices are not allowed on your person (e.g., no cell phones or calculators). Remove any smartwatches and non-religious head-wear. Cheating of any kind will not be tolerated and will result in a grade of zero. Answer each question. Show all work to receive full credit. Unless the question specifies, you may provide either an exact answer or round to two decimal places. Write your answers on the test. You have $\mathbf{2 4}$ houra to finish the exam. Answer all questions to the best of your ability. Unless otherwise specified, you are required to SHOW ALL YOUR WORK to receive full credit. The exam has 110 possible points. You will be graded out of 100 points.

WRITE THIS PARAGRAPH ON WHAT YOU SUBMIT ALONG WITH A SIGNATURE AND DATE.

I, \qquad will not under any circumstance use an online source, my peers, my notes, or any other resource besides my own knowledge to complete this exam. I will show all my work to demonstrate my knowledge on the topic. If I do break this honor code, I will accept a 0 on this assignment.

Questions	Possible	Score		Possible	Score
Quiestion 1	20		Question 5	10	
Question 2	10		Question 6	20	
Question 3	10		Question 7	10	
Question 4	20		Question 8	10	
			Total		

True/False

1. Instructions: You must determine if the statement is true or false. If you say false, provide a counterexample. If you say true, explain your reasoning.
a. Let A be a 3×3 matrix with $\operatorname{det}(A)=1$. Then $\operatorname{det}(2 A)=2$.

Solution 1. False. Take $A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Clearly $\operatorname{det}(2 A)=8$.
b. For every 2×2 matrices A and B, we have that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

Solution 2. False. Let both A and B be the identity. Then $\operatorname{det}(A+B)=4$ not 2 .
c. Performing row operations on a matrix does not change the eigenvalues.

Solution 3. False. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ has eigenvalues 0 and 2. Meanwhile $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ has eigenvalues 0 and 1.
d. Every positive-definite matrix is invertible.

Solution 4. True. All upper left determinants must be positive (nonzero included) including the determinant of the entire matrix.
e. If S is a positive-definite matrix, then S^{2} is also a positive-definite matrix.

Solution 5. True. Remember that S^{2} has eigenvalues that are the squares of the eigenvalues of S. This implies they are still positive. Also, S^{2} is clearly symmetric since the dot product of rows and columns is either the length of one of them or a repeated dot product for the reflected position across the diagonal (a21 and a12).

Open-ended

2. Consider the predator vs prey model where the gazelle population shows fast growth (from 5 g) but loss to lions (from -2ℓ), while the lion population always grows:

$$
\frac{d g}{d t}=5 g-2 \ell \quad \text { and } \quad \frac{d \ell}{d t}=g+2 \ell
$$

Solve the differential equation

$$
\frac{d \mathbf{u}}{d t}=\left[\begin{array}{cc}
5 & -2 \\
1 & 2
\end{array}\right] \mathbf{u}(t), \quad \text { where } \mathbf{u}(t)=\left[\begin{array}{l}
g(t) \\
\ell(t)
\end{array}\right]
$$

Leave two constants in your solution.
Solution 6. $\operatorname{det}(A-\lambda I)=(5-\lambda)(2-\lambda)+2=\lambda^{2}-7 \lambda+12=(\lambda-4)(\lambda-3)$. Thus, $\lambda_{1}=3$ and $\lambda_{2}=4$. When $\lambda_{1}=3$,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right] \Rightarrow x=y \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] . \text { When } \lambda_{2}=4} \\
& {\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right] \Rightarrow x=2 y \Rightarrow \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] . \text { Thus, } \mathbf{u}(t)=C e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+D e^{4 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
C e^{3 t}+2 D e^{4 t} \\
C e^{3 t}+D e^{4 t}
\end{array}\right]}
\end{aligned}
$$

3. Use Cramer's Rule to solve for the unknown coefficients above when the initial populations are $g(0)=50$ and $\ell(0)=30$ for the above.

Solution 7. $\mathbf{u}(0)=\left[\begin{array}{c}C+2 D \\ C+D\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}50 \\ 30\end{array}\right]$. Now we apply Cramer's Rule to this linear system!
$B_{1}=\left[\begin{array}{ll}50 & 2 \\ 30 & 1\end{array}\right]$ and $B_{2}=\left[\begin{array}{ll}1 & 50 \\ 1 & 30\end{array}\right]$. Thus, $\operatorname{det}(A)=-1, \operatorname{det}\left(B_{1}\right)=-10$ and $\operatorname{det}\left(B_{2}\right)=-20$.
Therefore, $C=-10 /-1=10$ and $D=-20 /-1=20$.
4. Consider the matrix $S=\left[\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right]$.
a. Determine if S is positive-definite using one of the four tests.

Solution 8. $3>0$ and $-9-16<0$. Since the determinant is negative, this is not positive definite.
b. Find an orthonormal matrix Q which diagonalizes S.

Solution 9. $\operatorname{det}(S-\lambda I)=(3-\lambda)(-3-\lambda)-16=\lambda^{2}-25=(\lambda-5)(\lambda+5)$. Thus, $\lambda_{1}=5$ and $\lambda_{2}=-5$. For λ_{1},
$\left[\begin{array}{cc}-2 & 4 \\ 4 & -8\end{array}\right] \Rightarrow 2 y=x \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. For λ_{2},
$\left[\begin{array}{ll}8 & 4 \\ 4 & 2\end{array}\right] \Rightarrow 2 x=-y \Rightarrow \mathbf{x}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
Since S is symmetric, the eigenvectors are orthogonal. Thus, we normalize them.
$\mathbf{q}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{q}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}1 \\ -2\end{array}\right]$. Therefore, the diagonalizing matrix Q is as follows:
$Q=\left[\begin{array}{cc}\frac{2 \sqrt{5}}{5} & \frac{\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} & \frac{-2 \sqrt{5}}{5}\end{array}\right]$.
c. Using the diagonalization in (b), find a formula for S^{k}.

Solution 10. $S^{k}=\left[\begin{array}{cc}\frac{2 \sqrt{5}}{5} & \frac{\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} & \frac{-2 \sqrt{5}}{5}\end{array}\right]\left[\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right]^{k}\left[\begin{array}{cc}\frac{2 \sqrt{5}}{5} & \frac{\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} & \frac{-2 \sqrt{5}}{5}\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}5^{k} & 0 \\ 0 & (-5)^{k}\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right]$
$\frac{1}{5}\left[\begin{array}{cc}2 \cdot 5^{k} & (-5)^{k} \\ 5^{k} & -2 \cdot(-5)^{k}\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}4 \cdot 5^{k}+(-5)^{k} & 2 \cdot 5^{k}-2 \cdot(-5)^{k} \\ 2 \cdot 5^{k}-2 \cdot(-5)^{k} & 5^{k}+4 \cdot(-5)^{k}\end{array}\right]$
d. Use the formula in (c) to calculate S^{4}.

Solution 11. $S^{4}=\frac{1}{5}\left[\begin{array}{cc}4 \cdot 5^{4}+(-5)^{4} & 2 \cdot 5^{4}-2 \cdot(-5)^{4} \\ 2 \cdot 5^{4}-2 \cdot(-5)^{4} & 5^{4}+4 \cdot(-5)^{4}\end{array}\right]=\left[\begin{array}{cc}5^{4} & 0 \\ 0 & 5^{4}\end{array}\right]$.
5. a. Given that the eigenvalues of a 2×2 matrix are 2 and 3 , what is the determinant of that matrix?

Solution 12. $2 \cdot 3=6$
b. Suppose the trace of a 2×2 matrix is 7 and one of the eigenvalues is $\lambda_{1}=-3$, what is the other eigenvalue λ_{2} ?

Solution 13. $-3+\lambda_{2}=7$. Thus, $\lambda_{2}=10$.
c. Suppose the trace of a 2×2 matrix is 4 and the determinant is 3 , what are the eigenvalues of the matrix?

Solution 14. $\lambda_{1} \lambda_{2}=3$ and $\lambda_{1}+\lambda_{2}=4$. By substitution, $4 \lambda_{2}-\lambda_{2}^{2}=3 \Rightarrow \lambda_{2}^{2}-4 \lambda_{2}+3=0 \Rightarrow\left(\lambda_{2}-3\right)\left(\lambda_{2}-1\right)=0$. Therefore, $\lambda_{2}=3$ or 1 . We see that λ_{1} is whichever value λ_{2} is not by the original sum equation.
d. Suppose the trace of a 3×3 matrix is 6 , the determinant is 6 , and one of the eigenvalues is $\lambda_{1}=1$, what are the other two eigenvalues of the matrix?

Solution 15. $\lambda_{2} \lambda_{3}=6$ and $1+\lambda_{2}+\lambda_{3}=6 \Rightarrow \lambda_{2}+\lambda_{3}=5$. By substitution, $5 \lambda_{3}-\lambda_{3}^{2}=6$. By arithmetic, $\lambda_{3}=3$ or 2 . By the original sum equation, λ_{2} is whichever of these values λ_{3} is not.
6. Find the inverse of the matrix $A=\left[\begin{array}{cccc}1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1\end{array}\right]$ using the cofactor inverse formula. (Hint: Show OR EXPLAIN how you got the cofactors)

Solution 16. $C_{11}=\left|\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=\left|\begin{array}{ccc}0 & 0 & 2 \\ -1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=2\left|\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right|=-4$
$C_{12}=-\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right|=-C_{11}=4 . \quad C_{13}=C_{11}=-4$. These determinants (when $C_{i j}$ has that $i+j \neq 5$) within the cofactors are all identical except the antidiagonal.
$C_{14}=-\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right|=-\left|\begin{array}{ccc}0 & 2 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right|=-\left|\begin{array}{ccc}0 & 2 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & 1\end{array}\right|=2\left|\begin{array}{cc}0 & 2 \\ -1 & 1\end{array}\right|=4 . \quad C_{23}=4, C_{32}=$ $4, C_{41}=4$.
$C=\left[\begin{array}{cccc}-4 & -4 & -4 & 4 \\ -4 & -4 & 4 & -4 \\ -4 & 4 & -4 & -4 \\ 4 & -4 & -4 & -4\end{array}\right]=C^{T}$. Since A reduces down to the following: $\left[\begin{array}{cccc}2 & 2 & 0 & 0 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1\end{array}\right]$,
we get $\operatorname{det}(A)=2\left|\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|-2\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right|=4\left|\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right|-4\left|\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right|=-8-8=-16$.
Therefore, $A^{-1}=\frac{C^{T}}{\operatorname{det}(A)}=\left[\begin{array}{cccc}1 / 4 & 1 / 4 & 1 / 4 & -1 / 4 \\ 1 / 4 & 1 / 4 & -1 / 4 & 1 / 4 \\ 1 / 4 & -1 / 4 & 1 / 4 & 1 / 4 \\ -1 / 4 & 1 / 4 & 1 / 4 & 1 / 4\end{array}\right]$.
7. Find a 2×2 matrix with eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=-2$ and corresponding eigenvectors $\mathbf{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Solution 17. $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}6 & -2 \\ 3 & -2\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}8 & -10 \\ 5 & -7\end{array}\right]$.
8. Let $\mathbf{u}=(1,2,1)$ and $\mathbf{v}=(3,7,1)$.
a. Find $\mathbf{u} \times \mathbf{v}$.

Solution 18. $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}i & j & k \\ 1 & 2 & 1 \\ 3 & 7 & 1\end{array}\right|=i\left|\begin{array}{ll}2 & 1 \\ 7 & 1\end{array}\right|-j\left|\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right|+k\left|\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right|=-5 i+2 j+k=(-5,2,1)$
b. Let $\mathbf{w}=(5,-2,3)$. Find the triple product of the three vectors.

Solution 19. $(-5,2,1) \cdot \mathbf{w}=-25-4+3=-26$
c. Find the area of the tetrahedron (3-dimensional triangle) spanned by \mathbf{u}, \mathbf{v}, and \mathbf{w}.

Solution 20. Area $=(1 / 2)|-26|=13$.

