
Name: Exam 2

Instructions: This exam is closed book, closed note, and an individual effort. Electronic devices

are not allowed on your person (e.g., no cell phones or calculators). Remove any smartwatches and

non-religious head-wear. Cheating of any kind will not be tolerated and will result in a grade of

zero. Answer each question. Show all work to receive full credit. Unless the question specifies,

you may provide either an exact answer or round to two decimal places. Write your answers on the

test. You have 24 houra to finish the exam. Answer all questions to the best of your ability. Unless

otherwise specified, you are required to SHOW ALL YOUR WORK to receive full credit. The

exam has 110 possible points. You will be graded out of 100 points.

WRITE THIS PARAGRAPH ON WHAT YOU SUBMIT ALONG WITH A SIG-

NATURE AND DATE.

I, , will not under any circumstance use an online source, my peers, my

notes, or any other resource besides my own knowledge to complete this exam. I will show all my

work to demonstrate my knowledge on the topic. If I do break this honor code, I will accept a 0 on

this assignment.

Questions Possible Score Possible Score

Quiestion 1 20 Question 5 10

Question 2 10 Question 6 20

Question 3 10 Question 7 10

Question 4 20 Question 8 10

Total

1 Thomas Luckner



True/False

1. Instructions: You must determine if the statement is true or false. If you say false, provide a

counterexample. If you say true, explain your reasoning.

a. Let A be a 3 × 3 matrix with det(A) = 1. Then det(2A) = 2.

b. For every 2 × 2 matrices A and B, we have that det(A+B) = det(A) + det(B).

c. Performing row operations on a matrix does not change the eigenvalues.

d. Every positive-definite matrix is invertible.

e. If S is a positive-definite matrix, then S2 is also a positive-definite matrix.
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Open-ended

2. Consider the predator vs prey model where the gazelle population shows fast growth (from

5g) but loss to lions (from −2`), while the lion population always grows:

dg

dt
= 5g − 2` and

d`

dt
= g + 2`.

Solve the differential equation

du

dt
=

[
5 −2

1 2

]
u(t), where u(t) =

[
g(t)

`(t)

]
.

Leave two constants in your solution.

3. Use Cramer’s Rule to solve for the unknown coefficients above when the initial populations

are g(0) = 50 and `(0) = 30 for the above.

4. Consider the matrix S =

[
3 4

4 −3

]
.

a. Determine if S is positive-definite using one of the four tests.

b. Find an orthonormal matrix Q which diagonalizes S.

c. Using the diagonalization in (b), find a formula for Sk.

d. Use the formula in (c) to calculate S4.

5. a. Given that the eigenvalues of a 2 × 2 matrix are 2 and 3, what is the determinant of that

matrix?

b. Suppose the trace of a 2 × 2 matrix is 7 and one of the eigenvalues is λ1 = −3, what is the

other eigenvalue λ2?

c. Suppose the trace of a 2× 2 matrix is 4 and the determinant is 3, what are the eigenvalues

of the matrix?

d. Suppose the trace of a 3× 3 matrix is 6, the determinant is 6, and one of the eigenvalues is

λ1 = 1, what are the other two eigenvalues of the matrix?

3



6. Find the inverse of the matrix A =


1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1

 using the cofactor inverse formula.

(Hint: Show OR EXPLAIN how you got the cofactors)

7. Find a 2 × 2 matrix with eigenvalues λ1 = 3 and λ2 = −2 and corresponding eigenvectors

x1 =

[
2

1

]
and x2 =

[
1

1

]
.

8. Let u = (1, 2, 1) and v = (3, 7, 1).

a. Find u× v.

b. Let w = (5,−2, 3). Find the triple product of the three vectors.

c. Find the area of the triangle spanned by u, v, and w.

4


