The Complete Solution To $A \mathbf{x}=\mathbf{b}$ (Part II)
 Tommy Luckner
 Department of Mathematics

Overview

This is a project, extending over two lab meetings, in which we will implement a sophisticated algorithm for finding the complete solution to $A \mathbf{x}=\mathbf{b}$ (if it has a solution). Comprehensive usage of the for and if structures are required. One major goal is to convert pseudocode into formal MATLAB code.

Activities

- To solve $A x=b$ for x, type

$$
\gg x=A \backslash b
$$

Try this on the example in the notes. Note: This is unreliable for when the system has free variables. Hence why we will create such a function in today's lab.

In-Class Exercise

Goal: For a given matrix A and vector b, find the complete solution to $A x=b$.
Algorithm Step 1: Find the particular solution. Set the free variables equal to 0. Solve for the pivot variables in $A x=b$.

1. Initialize the particular solution.
2. Use your csolve.m function to find the pivot and free columns of A.
3. Find the resulting matrix $p A$ (as in the notes).
4. Solve $p A \tilde{x}=b$.
5. Record the solution \tilde{x} in the appropriate indexes in x_{p}.

Algorithm Step 2: Find the special solution(s). Set each free variable equal to 1 and the rest of the free variables equal to 0 . Solve for the pivot variables in $A x=0$. Store the special solutions as a matrix with each column corresponding to a free variable equal to 1 .

1. Initialize the special solution(s).
2. Iterate for each free variable.
3. Set the i th free variable equal to 1 and solve the resulting system.
4. Record the solution in the appropriate indexes in x_{s}.
