The Gram-Schmidt Process

Tommy Luckner
Department of Mathematics

Overview

We implement the Gram-Schmidt process for a set of linearly independent vectors.

Algorithm

- Description of algorithm: The input is a matrix $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right]$ consisting of n linearly independent column vectors, and the output is a matrix $Q=$ $\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right]$, where Q consists of n orthonormal column vectors generated from A using the following process:

$$
\begin{aligned}
\mathbf{q}_{1} & =\mathbf{a}_{1} \\
\mathbf{q}_{2} & =\mathbf{a}_{2}-\frac{\mathbf{q}_{1}^{T} \mathbf{a}_{2}}{\mathbf{q}_{1}^{T} \mathbf{q}_{1}} \mathbf{q}_{1} \\
\mathbf{q}_{3} & =\mathbf{a}_{3}-\frac{\mathbf{q}_{1}^{T} \mathbf{a}_{3}}{\mathbf{q}_{1}^{T} \mathbf{q}_{1}} \mathbf{q}_{1}-\frac{\mathbf{q}_{2}^{T} \mathbf{a}_{3}}{\mathbf{q}_{2}^{T} \mathbf{q}_{2}} \mathbf{q}_{2} \\
& \vdots \\
\mathbf{q}_{j} & =\mathbf{a}_{j}-\frac{\mathbf{q}_{1}^{T} \mathbf{a}_{j}}{\mathbf{q}_{1}^{T} \mathbf{q}_{1}} \mathbf{q}_{1}-\frac{\mathbf{q}_{2}^{T} \mathbf{a}_{j}}{\mathbf{q}_{2}^{T} \mathbf{q}_{2}} \mathbf{q}_{2}-\cdots-\frac{\mathbf{q}_{j-1}^{T} \mathbf{a}_{j}}{\mathbf{q}_{j-1}^{T} \mathbf{q}_{j-1}} \mathbf{q}_{j-1} \\
& =\mathbf{a}_{j}-\sum_{k=1}^{j-1} \frac{\mathbf{q}_{k}^{T} \mathbf{a}_{j}}{\mathbf{q}_{k}^{T} \mathbf{q}_{k}} \mathbf{q}_{k} \\
& \vdots \\
\mathbf{q}_{n} & =\mathbf{a}_{n}-\frac{\mathbf{q}_{1}^{T} \mathbf{a}_{n}}{\mathbf{q}_{1}^{T} \mathbf{q}_{1}} \mathbf{q}_{1}-\frac{\mathbf{q}_{2}^{T} \mathbf{a}_{n}}{\mathbf{q}_{2}^{T} \mathbf{q}_{2}} \mathbf{q}_{2}-\cdots-\frac{\mathbf{q}_{n-1}^{T} \mathbf{a}_{n}}{\mathbf{q}_{n-1}^{T} \mathbf{q}_{n-1}} \mathbf{q}_{n-1} \\
& =\mathbf{a}_{n}-\sum_{k=1}^{n-1} \frac{\mathbf{q}_{k}^{T} \mathbf{a}_{n}}{\mathbf{q}_{k}^{T} \mathbf{q}_{k}} \mathbf{q}_{k}
\end{aligned}
$$

Note: Notice that the q_{i} are not unit vectors yet! It is not wrong to use the normalized (or unitized) version first to make computation easier, but for writing a program, it is best to save the normalizing (or unitizing) for the next step.

After these steps, we have obtained n orthogonal column vectors. We then normalize each of them (by dividing by their respective norms).

$$
\mathbf{q}_{1}=\frac{\mathbf{q}_{1}}{\left|\mathbf{q}_{1}\right|}, \quad \mathbf{q}_{2}=\frac{\mathbf{q}_{2}}{\left|\mathbf{q}_{2}\right|}, \quad \ldots, \quad \mathbf{q}_{n}=\frac{\mathbf{q}_{n}}{\left|\mathbf{q}_{n}\right|}
$$

Note: The column spaces of A and Q are the same.

- Command Window:

```
>> \(\left.A=\left[\begin{array}{lllllll}3 & 9 & 0 ; & -9 & -6 & 2 ; & 0\end{array}\right]-5\right]\)
\(\gg \mathrm{Q}=\mathrm{A}\);
\(\gg Q(:, 2)=A(:, 2)-(Q(:, 1) \cdot * A(:, 2)) /(Q(:, 1) \cdot * Q(:, 1)) * Q(:, 1)\)
\(\gg Q(:, 3)=A(:, 3)-\left(Q(:, 1)^{\prime} * A(:, 3)\right) /(Q(:, 1) ' * Q(:, 1)) * Q(:, 1)\)
    - \((Q(:, 2) ' * A(:, 3)) /(Q(:, 2) ' * Q(:, 2)) * Q(:, 2)\)
>> \(Q(:, 1)=Q(:, 1) / \operatorname{norm}(Q(:, 1))\)
>> \(\mathrm{Q}(:, 2)=\mathrm{Q}(:, 2) / \operatorname{norm}(\mathrm{Q}(:, 2))\)
>> \(\mathrm{Q}(:, 3)=\mathrm{Q}(:, 3) / \operatorname{norm}(\mathrm{Q}(:, 3))\)
```


Activities

Write a function grams. m that has as input a matrix A with arbitrary number of linearly independent columns and as output an orthonormal matrix Q obtained by the GramSchmidt process. Test your code with the matrix A above. This will be your lab assignment!

