Thoughts:
Last worksheet I left you with 2 examples to think about. Here they are:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1} \\
\sum_{n=0}^{\infty} \frac{2}{3^{n}}
\end{gathered}
$$

For now, I want to put these on the back burner. Let's instead start with an idea I hinted at before in the previous worksheet with a sequence with all values greater than or equal to 1 . We noticed this would diverge. Let's try to strengthen this statement. What if I had the following infinite series:

$$
\sum_{n=1}^{\infty} \frac{1}{2}
$$

Does this converge. The answer is no. If you add a number to itself an infinite amount of times it must be infinite! Let's try to look at another example.

$$
\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{2}\right)
$$

This is a little more difficult to see, but notice that 1 will appear an infinite amount of time, -1 will appear an infinite amount of time, and 0 will appear an infinite amount of time. This feels weird. Your instinct is to say well then it is 0 . This is divergent since we have no way of canceling 1's and -1 's out perfectly! Thus, divergent. There is a small pattern here though. Notice the limit of the sequences are 0 ! Thus, we have determined a conjecture.

Theorem 0.1 (Divergence Test (0-test)). If the sequence a_{n} does not converge to 0 then

$$
\sum_{n=1}^{\infty} a_{n}
$$

is divergent. This includes any starting place ($n=0, n=2$, etc.).
Note this says nothing about convergence! For example,

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent, but the sequence, $\frac{1}{n}$ (harmonic series), converges to 0 . The reason this series is divergent will soon come, but for now just assume this to be divergent for the sake of making this point of the 0 -test. Thus, the above theorem is all we can say about series! If you'd like a more formal proof of this, let me know! I can write up a nice one for you to get the point across.

Now we can bring up those examples again. For both of them we will consider what is called the n-th partial sum. Let's start with the first.

$$
\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1}
$$

The first partial sum is just the first term.

$$
S_{1}=\frac{1}{1}-\frac{1}{2}=1-\frac{1}{2}
$$

Now the second partial sum adds on the next term.

$$
S_{2}=S_{1}+\frac{1}{2}-\frac{1}{3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=1-\frac{1}{3}
$$

Notice the middle terms cancel each other! Let's do one more to get the point across.

$$
S_{3}=S_{2}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}
$$

Now we can generalize the pattern for some n.

$$
S_{n}=S_{n-1}+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}
$$

Let's zero in on what S_{n} is in terms of sigma notation.

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{k+1}
$$

Here we change to k to use the n we mention in the partial sum. Thus, we have the following relationship between the original sum and the partial sum:

$$
\sum_{k=1}^{\infty} \frac{1}{k}-\frac{1}{k+1}=\lim _{n \rightarrow \infty} S_{n}
$$

Thus, what we have left to do is take the limit of our S_{n}. In this case, $\lim _{n \rightarrow \infty} S_{n}=1-0=1$.
A series that continually "eats itself" like this is called a telescoping series.
NOTE: They are not always obvious in that a partial fraction decomposition can expose one if you are noticing a similar trend when you start looking at partial sums!!

Now let's consider the next example.

$$
\sum_{n=0}^{\infty} \frac{2}{3^{n}} .
$$

The sequence converges to 0 , so our divergence test is no match for this. Let's look at n-th partial sum of this in an arbitrary form: $a=2$ and $r=\frac{1}{3}$.

$$
S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}+a r^{n}
$$

Now I want you to bare with me here since we are going to try to show the sum formula. Let's consider the n-th partial sum multiplied by r.

$$
r S_{n}=a r+a r^{2}+\cdots+a r^{n+1}
$$

Remember our goal is like telescoping where we want a formula for the n-th partial sum so we can take a limit. Let's take the difference and see what happens.

$$
S_{n}-r S_{n}=S_{n}(1-r)=a-a r^{n+1}=a\left(1-r^{n+1}\right) \Rightarrow S_{n}=\frac{a\left(1-r^{n+1}\right)}{1-r}
$$

We have our formula, although out of left field. That's ok though1 Now we know where it comes from. Notice our infinite series is the following:

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n+1}\right)}{1-r}=\frac{a}{1-r}
$$

ONLY IF $|r|<1$ since the limit of r^{n+1} goes to 0 only if this condition holds true! The formulas above for S_{n} and the limit of S_{n} are the formulas for the finite geometric series and infinite geometric series! The general form is as follows:

$$
\sum_{n=0}^{\infty} a r^{n} .
$$

Only convergent going to infinity if the condition on r holds.
What is really nice about infinite geometric series is that the convergence or divergence of the series with the form above is completely determined by the condition on r ! Thus, we have the following theorem.

Theorem 0.2 (Geometric Series Test). If a series is of infinite geometric form (see above) then
(1) if $|r|<1$, the series is convergent or,
(2) it is divergent $(|r| \geq 1)$.

NOTE: Geometric series do not have to start at 0 ! You can start at 1 and have the following:

$$
\sum_{n=1}^{\infty} a r^{n}=\left(\sum_{n=0}^{\infty} a r^{n}\right)-a .
$$

Problems: Determine if the series is convergent or divergent and give your reasoning. If geometric, find the sum!

1. $\sum_{n=1}^{\infty} \frac{n-1}{3 n-1}$
2. $\sum_{n=0}^{\infty}\left(\frac{\pi}{3}\right)^{n}$
3. $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$
4. $\sum_{n=1}^{\infty} \cos \left(\frac{1}{n^{2}}\right)-\cos \left(\frac{1}{(n+1)^{2}}\right)$
5. $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$
6. $\sum_{n=1}^{\infty} 6(.9)^{n-1}$
