Thoughts:

This is one of my favorite sections of Calculus 1. Why? Because it allows me to be lazy! You are not always given a function in terms of just x. You may have something like: $x y+y=x$ and you want the derivative with respect to x. Now what? Well, what we do is consider y a function of x and approach accordingly! In the example I gave, we have a product rule ($x y$ is a product of 2 functions of x) and a single function with respect to x. One the right we have a single x. Thus, we have the following: $y+x y^{\prime}+y^{\prime}=1$. A little confusing, but let me explain. We never do anything we y except make it y^{\prime} when we are taking its derivative. That is it!
Now this should concern you because you learned next to nothing about the derivative! Let's change that by finding y^{\prime} ! Let's solve for it.

$$
\begin{gathered}
x y^{\prime}+y^{\prime}=1-y \\
y^{\prime}(x+1)=1-y \\
y^{\prime}=\frac{1-y}{x+1} .
\end{gathered}
$$

This is useful in answering questions where you need the value of the slope of the tangent line given a point (or an x where you find the y-coordinate). That's it! However, this is not its only application. If you can tell me how to find the derivative of this function without using a technique I show you, write it up and present it at math conferences because there is no other way that we know of! Here is the function: $y=x^{x}$. Weird function, but implicit differentiation helps us here if we use ln on both sides first!

$$
\ln (y)=x \ln (x)
$$

Now we can use implicit differentiation (chain rule on the left and product rule on the right)!

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\ln (x)+1 \\
\Rightarrow y^{\prime} & =y(\ln (x)+1)
\end{aligned}
$$

Tada! There is our derivative with respect to x. This is the value of implicit differentiation. Another example is for inverse trig functions! Here: $y=\arccos (x)$. Take cos of both sides. $\cos (y)=x$. Now use implicit! Try it with others!

Problems: Find y^{\prime} or $\frac{d y}{d x}$ for the functions below.

1. $x^{2}+2 x y-y^{2}+x=2$
2. $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$
3. $y \sin (2 x)=x \cos (2 y)$
4. $x^{2 / 3}+y^{2 / 3}=4$
5. $e^{x / y}=x-y$
6. $\sqrt{x+y}=1+x^{2} y^{2}$
7. $\tan (x-y)=\frac{y}{1+x^{2}}$
8. $y=\arctan (x)$
9. $y=\arctan \left(x^{2} y\right)=x+x y^{2}$
10. $y=x^{x^{x}}$
11. For 1 - 4 use the points $(1,2),(0,1 / 2),(\pi / 2, \pi / 4)$, and $(-3 \sqrt{3}, 1)$ respectively to find tangent lines at the points for the curves.
