Math 115 Final Review

1 Algebraic Expressions

1. Simplify each expression. Use absolute values if necessary.
(a) $\sqrt{(-3)^{2}}$
(b) $\sqrt{(-x)^{2}}$
(c) $\left(a^{4}\right)^{\frac{1}{2}}$
(d) $\left(\frac{d^{6}}{25}\right)^{-2}$
(e) $\frac{(12-2(-3+5))^{3}}{5^{2}-7(5-2)}+7$
2. Find each product, combine any like term.
(a) $(2 x-2)(5 x+7)$
(b) $\left(x^{2}+2 x+5\right)(2 x-1)$
(c) $\left(2 x^{2}-3 x+4\right)^{2}$
3. Factor each polynomial.
(a) $a^{2}-8 a+7$
(b) $4 t^{2}+5 t-9$
(c) $27 w^{4}-8 w$
4. Simplify each expression use absolute values if necessary.
(a) $\sqrt{x^{2}-2 x+1}$
(b) $\frac{x^{2}+x-6}{x^{2}+2 x+1} \div \frac{x^{2}-4}{x^{2}+3 x+2}$

2 Algebraic Equations and Graphing Basics

1. Solve $|2 x-5|=6$ for x.
2. Solve $K=5 / 9(F-32)+273$ for F
3. How many gallons of a 60% antifreeze solution must be mixed with 60 gallons of 20% antifreeze to get a mixture that is 50% antifreeze?
4. Find the equation of the line in point-slope form and slope-intercept form that passes through the points $(-5,-2)$ and $(5,12)$.
5. Find the equation of the line in slope-intercept form that passes through $(7,-3)$ and perpendicular to the line $y=\frac{1}{2} x+3$.
6. Find the equation of the line in slope-intercept form that passes through $(1,2)$ and parallel to the line $y=2 x-5$.
7. Graph the line $y-2=\frac{1}{3}(x+3)$.
8. Solve the following quadratic equations by factoring if posibble. If not use the quadratic formula to find all real or imaginary solutions.
(a) $x^{2}-7 x=30$
(b) $2 x^{2}-x+5=0$

3 Functions

1. Is $f=\{(2,-1),(3,4),(1,0),(2,5)\}$ a function?
2. Is $f=\{(1,2),(2,3),(3,3),(4,2)\}$ a function?
3. What test can be used to tell if the graph of a relation is the graph of a function?
4. Determine whether the following equations defines y as a function of x.
(a) $y=-10 x+2$
(b) $x=y^{6}$
(c) $x=y^{\frac{1}{4}}$
5. Let $f(x)=\sqrt{81-x^{2}}$. Sketch the graph and state the domain and range. Identify any intervals on which $f(x)$ is increasing, decreasing, or constant.
6. Let

$$
f(x)=\left\{\begin{array}{ll}
\sqrt{x+6} & \text { for }-6 \leq x \leq 2 \\
x & \text { for } x \geq 2
\end{array} .\right.
$$

Graph the function and determine the domain and range.
7. For each of the following find and simplify the difference quotient.
(a) $f(x)=3 x^{2}-8 x+7$
(b) $f(x)=\sqrt{x+2}$
(c) $f(x)=\frac{1}{x+1}$
8. For $f(x)=4 x+3$ and $g(x)=\sqrt{x+1}$ find $f \circ g(x)$ and $g \circ f(x)$.
9. Let $f(x)=|x|, g(x)=x-3$, and $h(x)=\sqrt{x}$ Write $N(x)=\sqrt{|x|-3}$ as a composition of f, g, and h.
10. What test, given the graph of a function, can be used to test if that function has an inverse function?
11. For each function determine if the function is one-to-one.
(a) $f=\{(1,2),(2,3),(3,2),(4,5)\}$
(b) $f=\{(1,2),(2,5),(3,11),(4,17)\}$
(c) $f(x)=x^{2}$
(d) $f(x)=x^{5}$
12. Find the inverse function of each of the following functions
(a) $f=\{(1,2),(2,3),(3,5),(4,7)\}$
(b) $f(x)=x^{3}+5$.

4 Polynomials

1. Write the quadratic function, $y=x^{2}+4 x$, in vertex form $\left(y=a(x-h)^{2}+k\right)$ and sketch its graph.(Hint complete the square!)

Vertex form:

2. Let $P(x)=x^{4}-2 x^{3}-2 x^{2}+2 x+1$.
(a) The possible rational roots of $P(x)$ are:
(b) Find all roots of $P(x)$.
3. How many roots(real or complex) does $x^{3}+29 x^{2}+100 x+7$ have?
4. How many roots does a degree n polynomial have?
5. Let $P(x)$ be a polynomial with real coefficients and with $2-3 i$ as a root. What is one other root of $P(x)$.
6. Find a polynomial in general form with real coefficients that has 4 and $5 i$ as roots.
7. Use Decrates' Rule of Signs to find the possibilities for the roots of

$$
x^{7}+10 x^{6}-100 x^{5}-50 x^{4}+35 x^{2}+40 x-5
$$

8. Find all real and imaginary solutions to $x^{4}+6 x^{2}-40$.(Simplify your answer, but give an exact answer using radicals as needed. Express complex numbers in terms of i.)

5 Exponential and Logarithmic Functions

1. Solve the following equations for x.
(a) $10^{x}=0.0001$
(b) $5^{x}=125$
(c) $\log _{2}(x)=4$
(d) $\log _{3}(81)=x$
(e) $\log _{x}\left(\frac{1}{27}\right)=3$
2. Find the inverse function for each of the following functions.
(a) $f(x)=e^{x+2}-5$
(b) $f(x)=\log _{6}(3 x-10)+3$
3. For each of the following logarithmic expressions use logarithm laws to rewrite each as a single logarithm.
(a) $2 \ln (x)+\frac{1}{2} \ln (y)-5 \ln (z)$
(b) $5 \log _{5}(x)-\log _{5}(y)-\frac{1}{3} \log _{5}(y)+7 \log _{5}(z)$
4. For each of the following rewrite each logarithmic expression as a sum and/or difference of simple logarithms. Simplify any simple logarithms if possible.
(a) $\ln \left(\frac{x^{5} \sqrt[3]{y}}{z^{2}}\right)$
(b) $\log _{3}\left(\frac{\sqrt{3}(x+y)^{5}}{z^{\frac{3}{2}}}\right)$
5. Solve the following equations for x
(a) $e^{2 x-3}=1$
(b) $\frac{1}{27} \cdot 9^{x^{2}}=3^{-1}$
(c) $5^{x+2}=7$
(d) $\ln (x-1)=\ln (x+1)+2$
(e) $\log _{3}(x-2)=1-\log _{3}(x+2)$

6 Trigonometric Functions

1. Determine if the given angles, α and β, are coterminal.
(a) $\alpha=1000^{\circ}, \beta=-440^{\circ}$
(b) $\alpha=117 \pi / 7, \beta=5 \pi / 7$
2. Find the exact value of each: (by exact I mean if you give me a decimal because you found it using a calculator you will recieve no credit)
(a) $\sin (-\pi / 6)=$
(b) $\cos (4 \pi / 3)=$
(c) $\tan (1001 \pi / 4)=$
(d) $\sec (17 \pi / 3)=$
(e) $\csc \left(-300^{\circ}\right)=$
(f) $\cot \left(-1290^{\circ}\right)=$
3. Find the exact value of the other five trigonometric functions, given that $\cos (\alpha)=\frac{8}{17}$ and α is in quadrant I.
(a) $\sin (\alpha)=$
(b) $\tan (\alpha)=$
(c) $\sec (\alpha)=$
(d) $\csc (\alpha)=$
(e) $\cot (\alpha)=$
4. Graph $y=3 \cos \left(\frac{1}{2} \pi x-\pi\right)+3$.

5. Find the exact value of each in radians, if any value is undefined write "undefined":
(a) $\arcsin (-1)=$
(b) $\sec ^{-1}(\sqrt{3})=$
(c) $\tan ^{-1}(-1)=$
(d) $\cos ^{-1}\left(\cos \left(\frac{7 \pi}{4}\right)\right)=$
(e) $\sin \left(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)=$
(f) $\tan \left(\arcsin \left(-\frac{1}{2}\right)\right)=$
(g) $\csc \left(\tan ^{-1}(0)\right)=$
6. Find the inverse of the function and state its domain.

$$
f(x)=\frac{1}{2} \cos (3 x)-1, \quad \text { for } 0 \leq x \leq \frac{\pi}{3}
$$

(a) $f^{-1}(x)=$
(b) Domain of $f^{-1}(x)$:
7. For the given triangle find the inticated trigononetric function values

(a) $\sin (\alpha)=$
(b) $\cos (\alpha)=$
(c) $\tan (\alpha)=$
(d) $\sec (\alpha)=$
(e) $\csc (\alpha)=$
(f) $\cot (\alpha)=$
8. Solve the right triangle shown, where $a=2$ and $b=7$.

(a) $c=$
(b) $\alpha=$
(c) $\beta=$

7 Trigonometric Identities

1. For each of the following express as sines and cosines then use any identities to simplify.
(a) $\sin ^{4} x-\cos ^{4} x$
(b) $(1+\sin x)(1-\csc x)$
2. For the following, use identities to find the exact values for the remaining five trigonometric functions.

$$
\tan \alpha=-\frac{8}{15}, \quad \frac{\pi}{2}<\alpha<\pi .
$$

(a) $\sin \alpha=$
(b) $\cos \alpha=$
(c) $\tan \alpha=$
(d) $\sec \alpha=$
(e) $\csc \alpha=$
3. Determine if $f(x)=x-\sin x$ is symmetric to the y-axis, the origin, or $f(x)$ has no symmetry.
4. Verify the following identities:
(a) $\ln |\csc x-\cot x|=-\ln |\csc x+\cot x|$
(b) $\frac{1-\tan ^{2} w+\sin ^{2} w \tan ^{2} w}{\sec ^{2} w}=\cos ^{4} w$
5. For each of the following equations find the solution set using the indicated units.
(a) $\cos x=-0.9135$ (in degrees)
(b) $\tan (2 x)=\sqrt{3}$ (in radians)
6. For each equation find all solutions in the interval $[0,2 \pi)$ or $\left[0^{\circ}, 360^{\circ}\right)$ depending on the indicated units.
(a) $4 \cdot 16^{\cos ^{2}(x)}=64^{\cos (x)}$ (in radians)
(b) $9 \sec ^{2} \theta \tan \theta=12 \tan \theta$ (in radians)
(c) $\csc ^{4} \theta-5 \csc ^{2} \theta+4=0$ (in degrees)

