Instructions: This homework is an individual effort. Answer each question. This is due on Monday, February 10th. Show all work to receive full credit.

1. For each of the following, graph a differentiable function $f(x)$ satisfying (at a point c):
a. $f(c)>0$ and $f^{\prime}(c)>0$
b. $f(c)>0$ and $f^{\prime}(c)=0$
c. $f(c)>0$ and $f^{\prime}(c)<0$
d. $f(c)=0$ and $f^{\prime}(c)>0$
e. $f(c)=0$ and $f^{\prime}(c)=0$
f. $f(c)=0$ and $f^{\prime}(c)<0$
g. $f(c)<0$ and $f^{\prime}(c)>0$
h. $f(c)<0$ and $f^{\prime}(c)=0$
i. $f(c)<0$ and $f^{\prime}(c)<0$
2. Suppose $f(x)=x^{2}$. Which of the following properties from $1(\mathrm{a})-1(\mathrm{~d})$ does $f(x)$ satisfy at:

- $x=0$
- $x=-2$
- $x=5$

3. Repeat problem (2) for $f(x)=x^{5}$.
4. Repeat problem (2) for $f(x)=\sqrt{x}$, for the values $x=0$ and $x=5$ only.
5. Repeat problem (2) for $f(x)=\ln (x)$, for the values $x=1, x=1 / e$, and $x=5$.
6. For each problem, find the tangent line and use it to approximate the function at the given x-value.
a. $f(4)=5$ and $f^{\prime}(4)=7$. Approximate $f(4.02)$. Then approximate $f(3.92)$.
b. $f(5)=3$ and $f^{\prime}(5)=-2$. Approximate $f(5.03)$.
c. $f(2)=-4$ and $f^{\prime}(2)-3$. Approximate $f(1.95)$.
