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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 3 / 29

■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Large deviation inequality

■ Talagrand’s inequality
■ Kim-Vu’s inequality
■ Rödl’s nibble method
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■ Ωi: a probability space for 1 ≤ i ≤ n.

■ Ω :=
∏n

i=1Ωi.

■ ~α := (α1, α2, . . . , αn) is a unit vector; αi ≥ 0.

■ ρ(A, ~x): Talagrand’s distance from ~x ∈ Ω to A ⊂ Ω:

ρ(A, ~x) := sup
~α : ‖~α‖=1

inf
~y∈A

∑

i : xi 6=yi

αi.

■ For any t ≥ 0, At = {~x ∈ Ω: ρ(A, ~x) ≤ t}.

Theorem [Talagrand’s inequality]:

Pr(A)(1− Pr(At)) ≤ e−t2/4.
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■ U(A, ~x) = {~s ∈ {0, 1}n : ∃~y ∈ A, xi 6= yi ⇒ si = 1}.
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■ U(A, ~x) = {~s ∈ {0, 1}n : ∃~y ∈ A, xi 6= yi ⇒ si = 1}.
■ V (A, ~x) := the convex hull of U(A, ~x).

Lemma: ρ(A, ~x) = min~v∈V (A,~x) ‖~v‖.
Proof: Let ~v ∈ V (A, ~x) achieve this minimum. For any
~s ∈ V (A, ~x), we have ~s · ~v ≥ ~v · ~v. Let ~α = ~v/‖~v‖. We have

ρ(A, ~x) ≥ inf
~y∈A

∑

i : xi 6=yi

αi ≥ inf
~s∈V (A,~x)

~s · ~α ≥ ‖~v‖.

Conversely, take any unit vector ~α. Write ~v =
∑

i λi~si for
some ~si ∈ U(A, ~x), λi ≥ 0, and

∑

i λi = 1. Since
‖~v‖ ≥∑i λi(~α · ~si), we have α · ~si ≤ ‖~v‖ for some i. �
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Talagrand actually proved the following theorem:

Theorem:
∫

Ω e
1
4ρ

2(A,~x)d~x ≤ 1
Pr(A).



A general theorem

Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 7 / 29

Talagrand actually proved the following theorem:

Theorem:
∫

Ω e
1
4ρ

2(A,~x)d~x ≤ 1
Pr(A).

Now we show this theorem implies Talagrand’s inequality.



A general theorem

Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 7 / 29

Talagrand actually proved the following theorem:

Theorem:
∫

Ω e
1
4ρ

2(A,~x)d~x ≤ 1
Pr(A).

Now we show this theorem implies Talagrand’s inequality.

For fixed A, consider X = ρ(A, ~x).

Pr(At) = Pr(X > t) ≤ Pr(X ≥ t)

= Pr(eX
2/4 ≥ et

2/4)

≤ E(eX
2/4)e−t2/4

≤ 1

Pr(A)
e−t2/4.

Hence, Pr(A)Pr(At) ≤ e−t2/4. �
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Ω e
1
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Pr(A) by induction on n.



Proof

Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 8 / 29

Now prove
∫

Ω e
1
4ρ

2(A,~x)d~x ≤ 1
Pr(A) by induction on n.

When n = 1, ρ(A, ~x) = 1 if ~x 6∈ A; and 0 if ~x ∈ A.

∫

Ω

e
1
4ρ

2(A,~x)d~x = Pr(A) + (1− Pr(A))e1/4 ≤ 1

Pr(A)
.
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Now prove
∫

Ω e
1
4ρ

2(A,~x)d~x ≤ 1
Pr(A) by induction on n.

When n = 1, ρ(A, ~x) = 1 if ~x 6∈ A; and 0 if ~x ∈ A.

∫

Ω

e
1
4ρ

2(A,~x)d~x = Pr(A) + (1− Pr(A))e1/4 ≤ 1

Pr(A)
.

Assume it holds for n. For any z ∈ Ω, write z = (x, ω) with
x ∈∏n

i=1Ωi and ω ∈ Ωn+1. Let

B = {x ∈
n
∏

i=1

Ωi : (x, ω) ∈ A for some ω ∈ Ωn+1.}

Aω = {x ∈
n
∏

i=1

Ωi : (x, ω) ∈ A}, for ω ∈ Ωn+1.
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Two ways to move z = (x, ω) ∈ Ω to A:

■ By changing ω, it reduces the problem to moving from x
to B. ~s ∈ U(B, x) ⇒ (~s, 1) ∈ U(A, (x, ω)).
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Two ways to move z = (x, ω) ∈ Ω to A:

■ By changing ω, it reduces the problem to moving from x
to B. ~s ∈ U(B, x) ⇒ (~s, 1) ∈ U(A, (x, ω)).

■ By not changing ω, it reduces the problem to moving
from x to Aω. ~t ∈ U(Aω, x) ⇒ (~t, 0) ∈ U(A, (x, ω)).

Taking the convex hulls, if ~s ∈ V (B, x) and ~t ∈ V (Aω, x),
then for any λ ∈ [0, 1],

((1− λ)~s+ λ~t, 1− λ) ∈ V (A, (x, ω)).

ρ2(A, (x, ω)) ≤ (1− λ)2 + ‖(1− λ)~s+ λ~t‖2

≤ (1− λ)2 + (1− λ)‖~s‖2 + λ‖~t‖2.
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Minimizing ‖~s‖ and ‖~t‖, we get

ρ2(A, (x, ω)) ≤ (1− λ)2 + λρ2(Aω, x) + (1− λ)ρ2(B, x).
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Minimizing ‖~s‖ and ‖~t‖, we get

ρ2(A, (x, ω)) ≤ (1− λ)2 + λρ2(Aω, x) + (1− λ)ρ2(B, x).

∫

x

e
1
4ρ

2(A,(x,ω))dx

≤ e
(1−λ)2

4

∫

x

(

e
1
4ρ

2(Aω,x)
)λ (

e
1
4ρ

2(B,x)
)1−λ

dx

≤ e
(1−λ)2

4

(
∫

x

e
1
4ρ

2(Aω,x)dx

)λ(∫

x

e
1
4ρ

2(B,x)dx

)1−λ

≤ e
(1−λ)2

4

(

1

Pr(Aω)

)λ(
1

Pr(B)

)1−λ
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Let r = Pr(Aω)
Pr(B) ≤ 1 and f(λ, r) = e(1−λ)2/4r−λ. Then

∫

x

e
1
4ρ

2(A,(x,ω))dx ≤ 1

Pr(B)
f(λ, r).

Choose λ = 1 + 2 ln r for e−1/2 ≤ r ≤ 1 and λ = 0
otherwise. One can show f(λ, r) ≤ 2− r. Thus,

∫

x

e
1
4ρ

2(A,(x,ω))dx ≤ 1

Pr(B)

(

2− Pr(Aω)

Pr(B)

)

.

∫

w

∫

x

e
1
4ρ

2(A,(x,ω))dxdω ≤ 1

Pr(B)

(

2− Pr(A)

Pr(B)

)

≤ 1

Pr(A)
. �
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■ A := (aij) a random symmetric matrix of dimension
n× n.

■ For 1 ≤ i ≤ j ≤ n, aij are independent random variables
with |aij| ≤ 1. Let aji = aij.

■ The eigenvalues of A is listed as

λ1 ≥ λ2 ≥ · · · ≥ λn.

Theorem [Alon, Krivelevich, Vu, (2002)]: For every
positive integer 1 ≤ s ≤ n, the probability that λs deviates

from its median by more than t is at most 4e−
t2

32s2 . The
same estimate holds for the probability that λn+1−s deviates

from its median by more than t.
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■ Ω: the product space of the entries aij, 1 ≤ i ≤ j ≤ n.

■ M : the median of s-th eigenvalue; i.e.,
Pr(λs(A) ≤ M) = 1

2 .

■ A: the event λs(A) ≤ M .

■ B: the event λs(A) ≥ M + t.

It suffices to show Bt′ ∩ A = ∅. I.e., for any B ∈ B find an
vector α = (αij), for any A ∈ A, show

∑

(i,j):aij 6=bij

αij ≥ t′
(

∑

1≤i≤j≤n

αij

)1/2

.
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■ For 1 ≤ p ≤ s, let v(p) be the p-th unit eigenvector of B.
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■ For 1 ≤ p ≤ s, let v(p) be the p-th unit eigenvector of B.

■ For 1 ≤ i ≤ n, let

αii =
s
∑

p=1

(v
(p)
i )2.

For 1 ≤ i < j ≤ n, let

αij = 2

√

√

√

√

s
∑

p=1

(v
(p)
i )2

√

√

√

√

s
∑

p=1

(v
(p)
j )2.



Claim 1

Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 15 / 29

Claim 1:
∑

1≤i≤j≤n α
2
ij ≤ 2s2.
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Claim 1:
∑

1≤i≤j≤n α
2
ij ≤ 2s2.

∑

1≤i≤j≤n

α2
ij =

n
∑

i=1

(

s
∑

p=1

(v
(p)
i )2

)2

+ 4
∑

1≤i<j≤n

(

s
∑

p=1

(v
(p)
i )2

)(

s
∑

p=1

(v
(p)
j )2

)

≤ 2

(

n
∑

i=1

s
∑

p=1

(v
(p)
i )2

)2

= 2s2.
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Claim 2:
∑

aij 6=bij
αij ≥ t

2 .
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Claim 2:
∑

aij 6=bij
αij ≥ t

2 .

Fix A ∈ A. Let u =
∑s

p=1 cpv
(p) be a unit vector in the span

of the vectors v(p) which is orthogonal to the eigenvectors of
the largest s− 1 eigenvalues of A. Then

∑s
p=1 c

2
p = 1,

u′Au ≤ λs(A) ≤ M , and u′Bu ≥ λs(B) ≥ M + t.
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Claim 2:
∑

aij 6=bij
αij ≥ t

2 .

Fix A ∈ A. Let u =
∑s

p=1 cpv
(p) be a unit vector in the span

of the vectors v(p) which is orthogonal to the eigenvectors of
the largest s− 1 eigenvalues of A. Then

∑s
p=1 c

2
p = 1,

u′Au ≤ λs(A) ≤ M , and u′Bu ≥ λs(B) ≥ M + t.

t ≤ u′(B − A)u

=
∑

aij 6=bij

(bij − aij)
s
∑

p=1

cpv
(p)
i

s
∑

p=1

cpv
(p)
j

≤ 2
∑

aij 6=bij

∣

∣

∣

∣

∣

s
∑

p=1

cpv
(p)
i

s
∑

p=1

cpv
(p)
j

∣

∣

∣

∣

∣

≤ 2
∑

aij 6=bij

α2
ij.
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∑

(i,j):aij 6=bij

αij ≥
t

2
√
2s

(

∑

1≤i≤j≤n

αij

)1/2

.

The Talagrand distance between A and B is at least t
2
√
2s
.
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∑

(i,j):aij 6=bij

αij ≥
t

2
√
2s

(

∑

1≤i≤j≤n

αij

)1/2

.

The Talagrand distance between A and B is at least t
2
√
2s
.

Applying Talagrand’s inequality, we get

Pr(A)Pr(B) ≤ e−t2/32s2.

Hence, Pr(λs ≥ m+ t) ≤ 2e−t2/32s2. Similar we get
Pr(λs ≤ m− t) ≤ 2e−t2/32s2. Hence

Pr(|λs −m| ≥ t) ≤ 4e−t2/32s2. �
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Let A = (aij) be a random symmetric (n× n)-matrix with
independent entry aij (1 ≤ i ≤ j ≤ n) satisfying |aij| ≤ K
and E(aij) = 0.

■ Vu [2007]: If Var(aij) ≤ σ2, then

‖A‖ ≤ 2σ
√
n+ C(Kσ)1/2n1/4 lnn.
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Let A = (aij) be a random symmetric (n× n)-matrix with
independent entry aij (1 ≤ i ≤ j ≤ n) satisfying |aij| ≤ K
and E(aij) = 0.

■ Vu [2007]: If Var(aij) ≤ σ2, then

‖A‖ ≤ 2σ
√
n+ C(Kσ)1/2n1/4 lnn.

■ Lu-Peng [2012+]: If Var(aij) ≤ σ2
ij, then

‖A‖ ≤ 2
√
∆+ C

√
K∆1/4 lnn,

where ∆ = max1≤i≤n

∑n
j=1 σ

2
ij.



General applications

Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 19 / 29

■ Ω :=
∏n

i=1Ωi.

■ h : Ω → R: a Lipschitz function.

■ Given f : N → N , h is f -certifiable if whenever h(x) ≥ s
there exists I ⊂ [n] with |I| ≤ f(s) so that all y ∈ Ω
that agree with x on the coordinates I have h(y) ≥ s.
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■ Ω :=
∏n

i=1Ωi.

■ h : Ω → R: a Lipschitz function.

■ Given f : N → N , h is f -certifiable if whenever h(x) ≥ s
there exists I ⊂ [n] with |I| ≤ f(s) so that all y ∈ Ω
that agree with x on the coordinates I have h(y) ≥ s.

Example: Let Ω = G(n, p) and h(G) be the number of
triangles in G. Then h is f -certifiable with f(s) = 3s.
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Theorem: Suppose X = h(·) is f -certifiable. For any
positive b and t, we have

Pr(X ≤ b− t
√

f(b))Pr(X ≥ b) ≤ e−t2/4.
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√

f(b)}. We claim for any
y with h(y) ≥ b, y 6∈ At.
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Theorem: Suppose X = h(·) is f -certifiable. For any
positive b and t, we have

Pr(X ≤ b− t
√

f(b))Pr(X ≥ b) ≤ e−t2/4.

Proof: Set A = {x : h(x) ≤ b− t
√

f(b)}. We claim for any
y with h(y) ≥ b, y 6∈ At.

Let I be a set of indices of size at most f(b) that certifies
h(y) ≥ b. Define αi = |I|−1/2 if i ∈ I, and 0 otherwise. For

any x ∈ A,
∑

xi 6=yi
αi ≥ t

√

f(b)|I|−1/2 ≥ t. By Talagrand’s
inequality,

Pr(X ≤ b− t
√

f(b))Pr(X ≥ b) ≤ e−t2/4. �
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■ H = (V,E): a hypergraph
■ Y :=

∑

F∈E(H)wF

∏

i∈F ti, a polynomial of degree k
with non-negative coefficients wF .

■ For each A ⊂ V (H), let YA =
∑

F∈E(H),A⊂F

wF

∏

i∈F−A

ti,

the partial derivative of Y with respect to the ti, i ∈ A.
■ Ei := max{E(YA) : |A| = i}.
■ E ′ := max{Ei : 1 ≤ i ≤ k}.
■ E := max{E(Y ), E ′}.
Theorem [Kim-Vu 2000]:

Pr(|Y − E(Y )| > ak(EE ′)1/2λk) < dke
−λnk−1,

where ak = 8k
√
k!, dk = 2e2.
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Counting triangles in G(n, p):

■ Let p = n−α with 0 < α < 2
3 .

■ For any vertex v, let Y := Y (v) be the number of
triangles containing v. Y =

∑

i,j 6=v

tvitvjtij.

Now µ := E(Y ) =
(

n−1
2

)

p3 ∼ 1
2n

2−3α and
E ′ ∼ max{np2, 1} = cµn−ǫ for some ǫ depending on α.
Applying Kim-Vu’s inequality, we have

Pr(|Y − µ| > δµ) ≤ Cn2e−C ′nǫ/6

.

Almost surely every vertex v is in ∼ µ triangles.
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A Steiner system with parameters t, k, n, written S(t, k, n),
is an n-element set S together with a set of k-element
subsets of S (called blocks) with the property that each
t-element subset of S is contained in exactly one block.
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A Steiner system with parameters t, k, n, written S(t, k, n),
is an n-element set S together with a set of k-element
subsets of S (called blocks) with the property that each
t-element subset of S is contained in exactly one block.

Steiner system S(2, 3, 7):

1 2 4
2 3 5
3 4 6
4 5 7
5 6 1
6 7 2
7 1 3

Fano plane
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■ Covering number M(n, k, t): the minimal size of a family

K ⊂
(

[n]
k

)

having the property that every t-set is
contained in at least one A ∈ K.
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■ Covering number M(n, k, t): the minimal size of a family

K ⊂
(
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)
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■ Covering number M(n, k, t): the minimal size of a family

K ⊂
(

[n]
k

)

having the property that every t-set is
contained in at least one A ∈ K.

■ Packing number m(n, k, t): the maximal size of a family

K ⊂
(

[n]
k

)

having the property that every t-set is
contained in at most one A ∈ K.

m(n, k, t) ≤
(

n
t

)

(

k
t

) ≤ M(n, k, t).

Equalities hold if and only if there exists a Steiner system
S(t, k, n).
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Erdős-Hanami’s conjecture: lim
n→∞

M(n,k,t)

(nt)/(
k
t)

= 1.

This is equivalent to the conjecture lim
n→∞

m(n,k,t)

(nt)/(
k
t)

= 1.



Rödl’s nibble method

Topic Course on Probabilistic Methods (week 9) Linyuan Lu, University of South Carolina – 25 / 29
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Rödl proved this conjecture. His method is known as Rödl’s
nibble or semi-random method, which applies in a much
more general setting, dealing with covers in uniform
hypergraphs.
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Erdős-Hanami’s conjecture: lim
n→∞

M(n,k,t)

(nt)/(
k
t)

= 1.

This is equivalent to the conjecture lim
n→∞

m(n,k,t)

(nt)/(
k
t)

= 1.

Rödl proved this conjecture. His method is known as Rödl’s
nibble or semi-random method, which applies in a much
more general setting, dealing with covers in uniform
hypergraphs.

Theorem (Pippenger): For an integer r ≥ 2 and a real
ε > 0 there exists a real γ = γ(r, ε) so that the following
holds: If the r-uniform hypergraph H on n vertices satisfies:

1. For each vertex x, degree d(x) ∈ [(1− γ)D, (1 + γ)D].
2. For each pair of vertices x, y, codegree d(x, y) < γD.

then ∃ a matching that covers all but at most ǫn vertices.
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Before nibble: A hypergraph H = (V,E) with

1. For all but at most δn of vertex x, d(x) = (1± δ)D.
2. For any two x, y, d(x, y) < δD.

Select a random family F of edges with probability p = ǫ/D
independently. Then delete the vertices covered by F .
After nibble:

1. |F| ≈ ǫn
r (1± δ′).

2. The remaining set of vertices V ′ has size ne−ǫ(1± δ′).
3. For all but at most δ′|V ′| of vertex x in the induced

hypergraph on V ′, d′(x) = De−ǫ(r−1)(1± δ′).



Iteration
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Choose ǫ > 0 and δ > 0 such that ǫ
1−e−ǫ + rǫ < 1 + ε. Let

t = ⌊− ln ǫ
ǫ ⌋. Repeat Rödl nibbles t times.
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Choose ǫ > 0 and δ > 0 such that ǫ
1−e−ǫ + rǫ < 1 + ε. Let

t = ⌊− ln ǫ
ǫ ⌋. Repeat Rödl nibbles t times. We get a sequence

of

■ δt > δt−1 > · · · > t1 > t0 = γ satisfying

δi ≤ δi+1e
−ǫ(r−1),

t
∏

i=0

(1 + δi) < 1 + 2δ.

■ H = H0 ) H1 ) · · · ) Ht satisfying

|Vi| = |Vi−1|e−ǫ(1± δi)

|Ei| =
ǫ|Vi−1|

r
(1± δi)

Di = Di−1e
−ǫ(r−1).
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Note that F := ∪t
i=1Fi covers all vertices except Vt. The

vertices in Vt need at most |Vt| additional edges to cover.
The edges in the final cover is at most

t−1
∑

i=0

ǫ|Vi|
r

(1 + 2δi) + |Vt|

≤ (1 + 4δ)
ǫn

r

1

1− e−ǫ
+ (1 + 2δ)ne−ǫt

< (1 + ε)
n

r
.

This complete the proof. �



Improvement
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Suppose that H is a r-uniform, D-regular hypergraph on n
vertices with codeg(H) = C. Let U(H) be the error term of
a nearly perfect matching. There is a number of
improvements on the error term.

■ Grable [1996]: If C = o(D/ lnn), then

U(H) = O

(

n
(

C log n
D

)1/(2r−1)+o(1)
)

.

■ Alon-Kim-Spencer [1997]: If C = 1, then

U(H) = O
(

n
(

C
D

)1/(r−1)+o(1))
)

for r ≥ 4 and

U(H) = O
(

n
(

C
D

)1/2
log3/2D

)

for r = 3.

■ Vu [2000]: For all r ≥ 3, ∃c > 0, such that

U(H) = O

(

n
(

C log n
D

)1/(r−1)

logcD

)

.
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