Topic Course on Probabilistic Methods (Week 9) Large deviation inequalities (III)

Linyuan Lu

University of South Carolina

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Large deviation inequality

- Talagrand's inequality
- Kim-Vu's inequality
- Rödl's nibble method

Talagrand's inequality

- Ω_{i} : a probability space for $1 \leq i \leq n$.

Talagrand's inequality

- Ω_{i} : a probability space for $1 \leq i \leq n$.
- $\Omega:=\prod_{i=1}^{n} \Omega_{i}$.

Talagrand's inequality

- Ω_{i} : a probability space for $1 \leq i \leq n$.
- $\Omega:=\prod_{i=1}^{n} \Omega_{i}$.
$\vec{\alpha}:=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a unit vector; $\alpha_{i} \geq 0$.

Talagrand's inequality

- Ω_{i} : a probability space for $1 \leq i \leq n$.
- $\Omega:=\prod_{i=1}^{n} \Omega_{i}$.

■ $\vec{\alpha}:=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a unit vector; $\alpha_{i} \geq 0$.

- $\rho(A, \vec{x})$: Talagrand's distance from $\vec{x} \in \Omega$ to $A \subset \Omega$:

$$
\rho(A, \vec{x}):=\sup _{\vec{\alpha}:\|\vec{\alpha}\|=1} \inf _{\vec{y} \in A} \sum_{i: x_{i} \neq y_{i}} \alpha_{i} .
$$

Talagrand's inequality

- Ω_{i} : a probability space for $1 \leq i \leq n$.
- $\Omega:=\prod_{i=1}^{n} \Omega_{i}$.
- $\vec{\alpha}:=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a unit vector; $\alpha_{i} \geq 0$.
- $\rho(A, \vec{x})$: Talagrand's distance from $\vec{x} \in \Omega$ to $A \subset \Omega$:

$$
\rho(A, \vec{x}):=\sup _{\vec{\alpha}:\|\vec{\alpha}\|=1} \inf _{\vec{y} \in A} \sum_{i: x_{i} \neq y_{i}} \alpha_{i} .
$$

- For any $t \geq 0, A_{t}=\{\vec{x} \in \Omega: \rho(A, \vec{x}) \leq t\}$.

Talagrand's inequality

- Ω_{i} : a probability space for $1 \leq i \leq n$.
- $\Omega:=\prod_{i=1}^{n} \Omega_{i}$.

■ $\vec{\alpha}:=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a unit vector; $\alpha_{i} \geq 0$.
■ $\rho(A, \vec{x})$: Talagrand's distance from $\vec{x} \in \Omega$ to $A \subset \Omega$:

$$
\rho(A, \vec{x}):=\sup _{\vec{\alpha}:\|\vec{\alpha}\|=1} \inf _{\vec{y} \in A} \sum_{i: x_{i} \neq y_{i}} \alpha_{i} .
$$

- For any $t \geq 0, A_{t}=\{\vec{x} \in \Omega: \rho(A, \vec{x}) \leq t\}$.

Theorem [Talagrand's inequality]:

$$
\operatorname{Pr}(A)\left(1-\operatorname{Pr}\left(A_{t}\right)\right) \leq e^{-t^{2} / 4} .
$$

The distance $\rho(A, \vec{x})$

$$
U(A, \vec{x})=\left\{\vec{s} \in\{0,1\}^{n}: \exists \vec{y} \in A, x_{i} \neq y_{i} \Rightarrow s_{i}=1\right\} .
$$

The distance $\rho(A, \vec{x})$

$$
U(A, \vec{x})=\left\{\vec{s} \in\{0,1\}^{n}: \exists \vec{y} \in A, x_{i} \neq y_{i} \Rightarrow s_{i}=1\right\} .
$$

$V(A, \vec{x}):=$ the convex hull of $U(A, \vec{x})$.

The distance $\rho(A, \vec{x})$

$$
U(A, \vec{x})=\left\{\vec{s} \in\{0,1\}^{n}: \exists \vec{y} \in A, x_{i} \neq y_{i} \Rightarrow s_{i}=1\right\}
$$

- $V(A, \vec{x}):=$ the convex hull of $U(A, \vec{x})$.

Lemma: $\rho(A, \vec{x})=\min _{\vec{v} \in V(A, \vec{x})}\|\vec{v}\|$.

The distance $\rho(A, \vec{x})$

■ $U(A, \vec{x})=\left\{\vec{s} \in\{0,1\}^{n}: \exists \vec{y} \in A, x_{i} \neq y_{i} \Rightarrow s_{i}=1\right\}$.

- $V(A, \vec{x}):=$ the convex hull of $U(A, \vec{x})$.

Lemma: $\rho(A, \vec{x})=\min _{\vec{v} \in V(A, \vec{x})}\|\vec{v}\|$.
Proof: Let $\vec{v} \in V(A, \vec{x})$ achieve this minimum. For any $\vec{s} \in V(A, \vec{x})$, we have $\vec{s} \cdot \vec{v} \geq \vec{v} \cdot \vec{v}$. Let $\vec{\alpha}=\vec{v} /\|\vec{v}\|$. We have

$$
\rho(A, \vec{x}) \geq \inf _{\vec{y} \in A} \sum_{i: x_{i} \neq y_{i}} \alpha_{i} \geq \inf _{\vec{s} \in V(A, \vec{x})} \vec{s} \cdot \vec{\alpha} \geq\|\vec{v}\| .
$$

The distance $\rho(A, \vec{x})$

■ $U(A, \vec{x})=\left\{\vec{s} \in\{0,1\}^{n}: \exists \vec{y} \in A, x_{i} \neq y_{i} \Rightarrow s_{i}=1\right\}$.

- $V(A, \vec{x}):=$ the convex hull of $U(A, \vec{x})$.

Lemma: $\rho(A, \vec{x})=\min _{\vec{v} \in V(A, \vec{x})}\|\vec{v}\|$.
Proof: Let $\vec{v} \in V(A, \vec{x})$ achieve this minimum. For any $\vec{s} \in V(A, \vec{x})$, we have $\vec{s} \cdot \vec{v} \geq \vec{v} \cdot \vec{v}$. Let $\vec{\alpha}=\vec{v} /\|\vec{v}\|$. We have

$$
\rho(A, \vec{x}) \geq \inf _{\vec{y} \in A} \sum_{i: x_{i} \neq y_{i}} \alpha_{i} \geq \inf _{\vec{s} \in V(A, \vec{x})} \vec{s} \cdot \vec{\alpha} \geq\|\vec{v}\| .
$$

Conversely, take any unit vector $\vec{\alpha}$. Write $\vec{v}=\sum_{i} \lambda_{i} \vec{s}_{i}$ for some $\vec{s}_{i} \in U(A, \vec{x}), \lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$. Since $\|\vec{v}\| \geq \sum_{i} \lambda_{i}\left(\vec{\alpha} \cdot \vec{s}_{i}\right)$, we have $\alpha \cdot \vec{s}_{i} \leq\|\vec{v}\|$ for some i.

A general theorem

Talagrand actually proved the following theorem:
Theorem: $\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x} \leq \frac{1}{\operatorname{Pr}(A)}$.

A general theorem

Talagrand actually proved the following theorem:
Theorem: $\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x} \leq \frac{1}{\operatorname{Pr}(A)}$.
Now we show this theorem implies Talagrand's inequality.

A general theorem

Talagrand actually proved the following theorem:
Theorem: $\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x} \leq \frac{1}{\operatorname{Pr}(A)}$.
Now we show this theorem implies Talagrand's inequality.
For fixed A, consider $X=\rho(A, \vec{x})$.

$$
\begin{aligned}
\operatorname{Pr}\left(\overline{A_{t}}\right)=\operatorname{Pr}(X>t) & \leq \operatorname{Pr}(X \geq t) \\
& =\operatorname{Pr}\left(e^{X^{2} / 4} \geq e^{t^{2} / 4}\right) \\
& \leq \mathrm{E}\left(e^{X^{2} / 4}\right) e^{-t^{2} / 4} \\
& \leq \frac{1}{\operatorname{Pr}(A)} e^{-t^{2} / 4} .
\end{aligned}
$$

Hence, $\operatorname{Pr}(A) \operatorname{Pr}\left(\overline{A_{t}}\right) \leq e^{-t^{2} / 4}$. \square

Proof

Now prove $\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x} \leq \frac{1}{\operatorname{Pr}(A)}$ by induction on n.

Proof

Now prove $\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x} \leq \frac{1}{\operatorname{Pr}(A)}$ by induction on n.
When $n=1, \rho(A, \vec{x})=1$ if $\vec{x} \notin A$; and 0 if $\vec{x} \in A$.

$$
\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x}=\operatorname{Pr}(A)+(1-\operatorname{Pr}(A)) e^{1 / 4} \leq \frac{1}{\operatorname{Pr}(A)} .
$$

Proof

Now prove $\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x} \leq \frac{1}{\operatorname{Pr}(A)}$ by induction on n.
When $n=1, \rho(A, \vec{x})=1$ if $\vec{x} \notin A$; and 0 if $\vec{x} \in A$.

$$
\int_{\Omega} e^{\frac{1}{4} \rho^{2}(A, \vec{x})} d \vec{x}=\operatorname{Pr}(A)+(1-\operatorname{Pr}(A)) e^{1 / 4} \leq \frac{1}{\operatorname{Pr}(A)} .
$$

Assume it holds for n. For any $z \in \Omega$, write $z=(x, \omega)$ with $x \in \prod_{i=1}^{n} \Omega_{i}$ and $\omega \in \Omega_{n+1}$. Let

$$
\begin{aligned}
& B=\left\{x \in \prod_{i=1}^{n} \Omega_{i}:(x, \omega) \in A \text { for some } \omega \in \Omega_{n+1} .\right\} \\
& A_{\omega}=\left\{x \in \prod_{i=1}^{n} \Omega_{i}:(x, \omega) \in A\right\}, \quad \text { for } \omega \in \Omega_{n+1} .
\end{aligned}
$$

Continue

Two ways to move $z=(x, \omega) \in \Omega$ to A :
By changing ω, it reduces the problem to moving from x to $B . \vec{s} \in U(B, x) \Rightarrow(\vec{s}, 1) \in U(A,(x, \omega))$.

Continue

Two ways to move $z=(x, \omega) \in \Omega$ to A :

- By changing ω, it reduces the problem to moving from x to $B . \vec{s} \in U(B, x) \Rightarrow(\vec{s}, 1) \in U(A,(x, \omega))$.
- By not changing ω, it reduces the problem to moving from x to $A_{\omega} \cdot \vec{t} \in U\left(A_{\omega}, x\right) \Rightarrow(\vec{t}, 0) \in U(A,(x, \omega))$.

Continue

Two ways to move $z=(x, \omega) \in \Omega$ to A :

- By changing ω, it reduces the problem to moving from x to $B . \vec{s} \in U(B, x) \Rightarrow(\vec{s}, 1) \in U(A,(x, \omega))$.
- By not changing ω, it reduces the problem to moving from x to $A_{\omega} \cdot \vec{t} \in U\left(A_{\omega}, x\right) \Rightarrow(\vec{t}, 0) \in U(A,(x, \omega))$.

Taking the convex hulls, if $\vec{s} \in V(B, x)$ and $\vec{t} \in V\left(A_{\omega}, x\right)$, then for any $\lambda \in[0,1]$,

$$
((1-\lambda) \vec{s}+\lambda \vec{t}, 1-\lambda) \in V(A,(x, \omega))
$$

Continue

Two ways to move $z=(x, \omega) \in \Omega$ to A :

- By changing ω, it reduces the problem to moving from x to $B . \vec{s} \in U(B, x) \Rightarrow(\vec{s}, 1) \in U(A,(x, \omega))$.
- By not changing ω, it reduces the problem to moving from x to $A_{\omega} \cdot \vec{t} \in U\left(A_{\omega}, x\right) \Rightarrow(\vec{t}, 0) \in U(A,(x, \omega))$.

Taking the convex hulls, if $\vec{s} \in V(B, x)$ and $\vec{t} \in V\left(A_{\omega}, x\right)$, then for any $\lambda \in[0,1]$,

$$
\begin{aligned}
&((1-\lambda) \vec{s}+\lambda \vec{t}, 1-\lambda) \in V(A,(x, \omega)) \\
& \rho^{2}(A,(x, \omega)) \leq(1-\lambda)^{2}+\|(1-\lambda) \vec{s}+\lambda \vec{t}\|^{2} \\
& \leq(1-\lambda)^{2}+(1-\lambda)\|\vec{s}\|^{2}+\lambda\|\vec{t}\|^{2} .
\end{aligned}
$$

Continue

Minimizing $\|\vec{s}\|$ and $\|\vec{t}\|$, we get

$$
\rho^{2}(A,(x, \omega)) \leq(1-\lambda)^{2}+\lambda \rho^{2}\left(A_{\omega}, x\right)+(1-\lambda) \rho^{2}(B, x) .
$$

Continue

Minimizing $\|\vec{s}\|$ and $\|\vec{t}\|$, we get

$$
\begin{aligned}
& \rho^{2}(A,(x, \omega)) \leq(1-\lambda)^{2}+\lambda \rho^{2}\left(A_{\omega}, x\right)+(1-\lambda) \rho^{2}(B, x) . \\
& \quad \int_{x} e^{\frac{1}{4} \rho^{2}(A,(x, \omega))} d x \\
& \quad \leq e^{\frac{(1-\lambda)^{2}}{4}} \int_{x}\left(e^{\frac{1}{4} \rho^{2}\left(A_{\omega}, x\right)}\right)^{\lambda}\left(e^{\frac{1}{4} \rho^{2}(B, x)}\right)^{1-\lambda} d x \\
& \quad \leq e^{\frac{(1-\lambda)^{2}}{4}}\left(\int_{x} e^{\frac{1}{4} \rho^{2}\left(A_{\omega}, x\right)} d x\right)^{\lambda}\left(\int_{x} e^{\frac{1}{4} \rho^{2}(B, x)} d x\right)^{1-\lambda} \\
& \quad \leq e^{\frac{(1-\lambda)^{2}}{4}}\left(\frac{1}{\operatorname{Pr}\left(A_{\omega}\right)}\right)^{\lambda}\left(\frac{1}{\operatorname{Pr}(B)}\right)^{1-\lambda}
\end{aligned}
$$

Continue

Let $r=\frac{\operatorname{Pr}\left(A_{\omega}\right)}{\operatorname{Pr}(B)} \leq 1$ and $f(\lambda, r)=e^{(1-\lambda)^{2} / 4} r^{-\lambda}$. Then

$$
\int_{x} e^{\frac{1}{4} \rho^{2}(A,(x, \omega))} d x \leq \frac{1}{\operatorname{Pr}(B)} f(\lambda, r) .
$$

Choose $\lambda=1+2 \ln r$ for $e^{-1 / 2} \leq r \leq 1$ and $\lambda=0$ otherwise. One can show $f(\lambda, r) \leq 2-r$. Thus,

$$
\int_{x} e^{\frac{1}{4} \rho^{2}(A,(x, \omega))} d x \leq \frac{1}{\operatorname{Pr}(B)}\left(2-\frac{\operatorname{Pr}\left(A_{\omega}\right)}{\operatorname{Pr}(B)}\right) .
$$

$\int_{U_{0}} \int_{x} e^{\frac{1}{4} \rho^{2}(A,(x, \omega))} d x d \omega \leq \frac{1}{\operatorname{Pr}(B)}\left(2-\frac{\operatorname{Pr}(A)}{\operatorname{Pr}(B)}\right) \leq \frac{1}{\operatorname{Pr}(A)}$.

An application

$A:=\left(a_{i j}\right)$ a random symmetric matrix of dimension

 $n \times n$.
An application

- $A:=\left(a_{i j}\right)$ a random symmetric matrix of dimension $n \times n$.

For $1 \leq i \leq j \leq n, a_{i j}$ are independent random variables with $\left|a_{i j}\right| \leq 1$. Let $a_{j i}=a_{i j}$.

An application

- $A:=\left(a_{i j}\right)$ a random symmetric matrix of dimension $n \times n$.
- For $1 \leq i \leq j \leq n, a_{i j}$ are independent random variables with $\left|a_{i j}\right| \leq 1$. Let $a_{j i}=a_{i j}$.
- The eigenvalues of A is listed as

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

An application

- $A:=\left(a_{i j}\right)$ a random symmetric matrix of dimension $n \times n$.
- For $1 \leq i \leq j \leq n, a_{i j}$ are independent random variables with $\left|a_{i j}\right| \leq 1$. Let $a_{j i}=a_{i j}$.
- The eigenvalues of A is listed as

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Theorem [Alon, Krivelevich, Vu, (2002)]: For every positive integer $1 \leq s \leq n$, the probability that λ_{s} deviates from its median by more than t is at most $4 e^{-\frac{t^{2}}{32 s^{2}}}$. The same estimate holds for the probability that λ_{n+1-s} deviates from its median by more than t.

Proof

- Ω : the product space of the entries $a_{i j}, 1 \leq i \leq j \leq n$.

Proof

- Ω : the product space of the entries $a_{i j}, 1 \leq i \leq j \leq n$. M : the median of s-th eigenvalue; i.e., $\operatorname{Pr}\left(\lambda_{s}(A) \leq M\right)=\frac{1}{2}$.

Proof

- Ω : the product space of the entries $a_{i j}, 1 \leq i \leq j \leq n$.

■ M : the median of s-th eigenvalue; i.e., $\operatorname{Pr}\left(\lambda_{s}(A) \leq M\right)=\frac{1}{2}$.
\mathcal{A} : the event $\lambda_{s}(A) \leq M$.

Proof

- Ω : the product space of the entries $a_{i j}, 1 \leq i \leq j \leq n$.

■ M : the median of s-th eigenvalue; i.e., $\operatorname{Pr}\left(\lambda_{s}(A) \leq M\right)=\frac{1}{2}$.
\mathcal{A} : the event $\lambda_{s}(A) \leq M$.
\mathcal{B} : the event $\lambda_{s}(A) \geq M+t$.

Proof

- Ω : the product space of the entries $a_{i j}, 1 \leq i \leq j \leq n$.
- M : the median of s-th eigenvalue; i.e.,

$$
\operatorname{Pr}\left(\lambda_{s}(A) \leq M\right)=\frac{1}{2} .
$$

- \mathcal{A} : the event $\lambda_{s}(A) \leq M$.
- \mathcal{B} : the event $\lambda_{s}(A) \geq M+t$.

It suffices to show $\mathcal{B}_{t^{\prime}} \cap \mathcal{A}=\emptyset$. I.e., for any $B \in \mathcal{B}$ find an vector $\alpha=\left(\alpha_{i j}\right)$, for any $A \in \mathcal{A}$, show

$$
\sum_{(i, j): a_{i j} \neq b_{i j}} \alpha_{i j} \geq t^{\prime}\left(\sum_{1 \leq i \leq j \leq n} \alpha_{i j}\right)^{1 / 2}
$$

Continue

For $1 \leq p \leq s$, let $v^{(p)}$ be the p-th unit eigenvector of B.

Continue

For $1 \leq p \leq s$, let $v^{(p)}$ be the p-th unit eigenvector of B.

For $1 \leq i \leq n$, let

$$
\alpha_{i i}=\sum_{p=1}^{s}\left(v_{i}^{(p)}\right)^{2}
$$

For $1 \leq i<j \leq n$, let

$$
\alpha_{i j}=2 \sqrt{\sum_{p=1}^{s}\left(v_{i}^{(p)}\right)^{2}} \sqrt{\sum_{p=1}^{s}\left(v_{j}^{(p)}\right)^{2}}
$$

Claim 1

Claim 1: $\sum_{1 \leq i \leq j \leq n} \alpha_{i j}^{2} \leq 2 s^{2}$.

Claim 1

Claim 1: $\sum_{1 \leq i \leq j \leq n} \alpha_{i j}^{2} \leq 2 s^{2}$.

$$
\begin{aligned}
\sum_{1 \leq i \leq j \leq n} \alpha_{i j}^{2}= & \sum_{i=1}^{n}\left(\sum_{p=1}^{s}\left(v_{i}^{(p)}\right)^{2}\right)^{2} \\
& +4 \sum_{1 \leq i<j \leq n}\left(\sum_{p=1}^{s}\left(v_{i}^{(p)}\right)^{2}\right)\left(\sum_{p=1}^{s}\left(v_{j}^{(p)}\right)^{2}\right) \\
\leq & 2\left(\sum_{i=1}^{n} \sum_{p=1}^{s}\left(v_{i}^{(p)}\right)^{2}\right)^{2} \\
= & 2 s^{2}
\end{aligned}
$$

Claim 2

Claim 2: $\sum_{a_{i j} \neq b_{i j}} \alpha_{i j} \geq \frac{t}{2}$.

Claim 2

Claim 2: $\sum_{a_{i j} \neq b_{i j}} \alpha_{i j} \geq \frac{t}{2}$.
Fix $A \in \mathcal{A}$. Let $u=\sum_{p=1}^{s} c_{p} v^{(p)}$ be a unit vector in the span of the vectors $v^{(p)}$ which is orthogonal to the eigenvectors of the largest $s-1$ eigenvalues of A . Then $\sum_{p=1}^{s} c_{p}^{2}=1$, $u^{\prime} A u \leq \lambda_{s}(A) \leq M$, and $u^{\prime} B u \geq \lambda_{s}(B) \geq M+t$.

Claim 2

Claim 2: $\sum_{a_{i j} \neq b_{i j}} \alpha_{i j} \geq \frac{t}{2}$.
Fix $A \in \mathcal{A}$. Let $u=\sum_{p=1}^{s} c_{p} v^{(p)}$ be a unit vector in the span of the vectors $v^{(p)}$ which is orthogonal to the eigenvectors of the largest $s-1$ eigenvalues of A . Then $\sum_{p=1}^{s} c_{p}^{2}=1$, $u^{\prime} A u \leq \lambda_{s}(A) \leq M$, and $u^{\prime} B u \geq \lambda_{s}(B) \geq M+t$.

$$
\begin{aligned}
t & \leq u^{\prime}(B-A) u \\
& =\sum_{a_{i j} \neq b_{i j}}\left(b_{i j}-a_{i j}\right) \sum_{p=1}^{s} c_{p} v_{i}^{(p)} \sum_{p=1}^{s} c_{p} v_{j}^{(p)} \\
& \leq 2 \sum_{a_{i j} \neq b_{i j}}\left|\sum_{p=1}^{s} c_{p} v_{i}^{(p)} \sum_{p=1}^{s} c_{p} v_{j}^{(p)}\right| \leq 2 \sum_{a_{i j} \neq b_{i j}} \alpha_{i j}^{2} .
\end{aligned}
$$

Putting together

$$
\sum_{(i, j): a_{i j} \neq b_{i j}} \alpha_{i j} \geq \frac{t}{2 \sqrt{2} s}\left(\sum_{1 \leq i \leq j \leq n} \alpha_{i j}\right)^{1 / 2}
$$

The Talagrand distance between \mathcal{A} and \mathcal{B} is at least $\frac{t}{2 \sqrt{2} s}$.

Putting together

$$
\sum_{(i, j): a_{i j} \neq b_{i j}} \alpha_{i j} \geq \frac{t}{2 \sqrt{2} s}\left(\sum_{1 \leq i \leq j \leq n} \alpha_{i j}\right)^{1 / 2}
$$

The Talagrand distance between \mathcal{A} and \mathcal{B} is at least $\frac{t}{2 \sqrt{2 s}}$. Applying Talagrand's inequality, we get

$$
\operatorname{Pr}(\mathcal{A}) \operatorname{Pr}(\mathcal{B}) \leq e^{-t^{2} / 32 s^{2}}
$$

Hence, $\operatorname{Pr}\left(\lambda_{s} \geq m+t\right) \leq 2 e^{-t^{2} / 32 s^{2}}$. Similar we get $\operatorname{Pr}\left(\lambda_{s} \leq m-t\right) \leq 2 e^{-t^{2} / 32 s^{2}}$. Hence

$$
\operatorname{Pr}\left(\left|\lambda_{s}-m\right| \geq t\right) \leq 4 e^{-t^{2} / 32 s^{2}}
$$

\square

More on eigenvalues

Let $A=\left(a_{i j}\right)$ be a random symmetric $(n \times n)$-matrix with independent entry $a_{i j}(1 \leq i \leq j \leq n)$ satisfying $\left|a_{i j}\right| \leq K$ and $E\left(a_{i j}\right)=0$.

- $\mathbf{V u}$ [2007]: If $\operatorname{Var}\left(a_{i j}\right) \leq \sigma^{2}$, then

$$
\|A\| \leq 2 \sigma \sqrt{n}+C(K \sigma)^{1 / 2} n^{1 / 4} \ln n
$$

More on eigenvalues

Let $A=\left(a_{i j}\right)$ be a random symmetric $(n \times n)$-matrix with independent entry $a_{i j}(1 \leq i \leq j \leq n)$ satisfying $\left|a_{i j}\right| \leq K$ and $E\left(a_{i j}\right)=0$.

- $\mathbf{V u}$ [2007]: If $\operatorname{Var}\left(a_{i j}\right) \leq \sigma^{2}$, then

$$
\|A\| \leq 2 \sigma \sqrt{n}+C(K \sigma)^{1 / 2} n^{1 / 4} \ln n
$$

- Lu-Peng [2012+]: If $\operatorname{Var}\left(a_{i j}\right) \leq \sigma_{i j}^{2}$, then

$$
\|A\| \leq 2 \sqrt{\Delta}+C \sqrt{K} \Delta^{1 / 4} \ln n
$$

where $\Delta=\max _{1 \leq i \leq n} \sum_{j=1}^{n} \sigma_{i j}^{2}$.

General applications

$\Omega:=\prod_{i=1}^{n} \Omega_{i}$.
■ $h: \Omega \rightarrow \mathbb{R}:$ a Lipschitz function.
Given $f: N \rightarrow N, h$ is f-certifiable if whenever $h(x) \geq s$ there exists $I \subset[n]$ with $|I| \leq f(s)$ so that all $y \in \Omega$ that agree with x on the coordinates I have $h(y) \geq s$.

General applications

- $\Omega:=\prod_{i=1}^{n} \Omega_{i}$.
- $h: \Omega \rightarrow \mathbb{R}$: a Lipschitz function.
- Given $f: N \rightarrow N, h$ is f-certifiable if whenever $h(x) \geq s$ there exists $I \subset[n]$ with $|I| \leq f(s)$ so that all $y \in \Omega$ that agree with x on the coordinates I have $h(y) \geq s$.

Example: Let $\Omega=G(n, p)$ and $h(G)$ be the number of triangles in G. Then h is f-certifiable with $f(s)=3 s$.

Theorem

Theorem: Suppose $X=h(\cdot)$ is f-certifiable. For any positive b and t, we have

$$
\operatorname{Pr}(X \leq b-t \sqrt{f(b)}) \operatorname{Pr}(X \geq b) \leq e^{-t^{2} / 4} .
$$

Theorem

Theorem: Suppose $X=h(\cdot)$ is f-certifiable. For any positive b and t, we have

$$
\operatorname{Pr}(X \leq b-t \sqrt{f(b)}) \operatorname{Pr}(X \geq b) \leq e^{-t^{2} / 4} .
$$

Proof: Set $A=\{x: h(x) \leq b-t \sqrt{f(b)}\}$. We claim for any y with $h(y) \geq b, y \notin A_{t}$.

Theorem

Theorem: Suppose $X=h(\cdot)$ is f-certifiable. For any positive b and t, we have

$$
\operatorname{Pr}(X \leq b-t \sqrt{f(b)}) \operatorname{Pr}(X \geq b) \leq e^{-t^{2} / 4}
$$

Proof: Set $A=\{x: h(x) \leq b-t \sqrt{f(b)}\}$. We claim for any y with $h(y) \geq b, y \notin A_{t}$.
Let I be a set of indices of size at most $f(b)$ that certifies $h(y) \geq b$. Define $\alpha_{i}=|I|^{-1 / 2}$ if $i \in I$, and 0 otherwise. For any $x \in A, \sum_{x_{i} \neq y_{i}} \alpha_{i} \geq t \sqrt{f(b)}|I|^{-1 / 2} \geq t$. By Talagrand's inequality,

$$
\operatorname{Pr}(X \leq b-t \sqrt{f(b)}) \operatorname{Pr}(X \geq b) \leq e^{-t^{2} / 4}
$$

\square

Kim-Vu's inequality

- $H=(V, E)$: a hypergraph
- $Y:=\sum_{F \in E(H)} w_{F} \prod_{i \in F} t_{i}$, a polynomial of degree k with non-negative coefficients w_{F}.
- For each $A \subset V(H)$, let $Y_{A}=\sum_{F \in E(H), A \subset F} w_{F} \prod_{i \in F-A} t_{i}$, the partial derivative of Y with respect to the $t_{i}, i \in A$.
- $E_{i}:=\max \left\{\mathrm{E}\left(Y_{A}\right):|A|=i\right\}$.
- $E^{\prime}:=\max \left\{E_{i}: 1 \leq i \leq k\right\}$.
- $E:=\max \left\{\mathrm{E}(Y), E^{\prime}\right\}$.

Theorem [Kim-Vu 2000]:

$$
\operatorname{Pr}\left(|Y-\mathrm{E}(Y)|>a_{k}\left(E E^{\prime}\right)^{1 / 2} \lambda^{k}\right)<d_{k} e^{-\lambda} n^{k-1}
$$

where $a_{k}=8^{k} \sqrt{k!}, d_{k}=2 e^{2}$.

Examples

Counting triangles in $G(n, p)$:

- Let $p=n^{-\alpha}$ with $0<\alpha<\frac{2}{3}$.
- For any vertex v, let $Y:=Y(v)$ be the number of triangles containing $v . Y=\sum_{i, j \neq v} t_{v i} t_{v j} t_{i j}$.
Now $\mu:=\mathrm{E}(Y)=\binom{n-1}{2} p^{3} \sim \frac{1}{2} n^{2-3 \alpha}$ and $E^{\prime} \sim \max \left\{n p^{2}, 1\right\}=c \mu n^{-\epsilon}$ for some ϵ depending on α. Applying Kim-Vu's inequality, we have

$$
\operatorname{Pr}(|Y-\mu|>\delta \mu) \leq C n^{2} e^{-C^{\prime} n^{\epsilon / 6}}
$$

Almost surely every vertex v is in $\sim \mu$ triangles.

Steiner System

A Steiner system with parameters t, k, n, written $S(t, k, n)$, is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block.

Steiner System

A Steiner system with parameters t, k, n, written $S(t, k, n)$, is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block.

Steiner system $S(2,3,7)$:

1	2	4
2	3	5
3	4	6
4	5	7
5	6	1
6	7	2
7	1	3

Fano plane

Covering/Packing number

Covering number $M(n, k, t)$: the minimal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at least one $A \in \mathcal{K}$.

Covering/Packing number

■ Covering number $M(n, k, t)$: the minimal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at least one $A \in \mathcal{K}$.

- Packing number $m(n, k, t)$: the maximal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at most one $A \in \mathcal{K}$.

Covering/Packing number

■ Covering number $M(n, k, t)$: the minimal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at least one $A \in \mathcal{K}$.

- Packing number $m(n, k, t)$: the maximal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at most one $A \in \mathcal{K}$.

$$
m(n, k, t) \leq \frac{\binom{n}{t}}{\binom{k}{t}} \leq M(n, k, t)
$$

Covering/Packing number

■ Covering number $M(n, k, t)$: the minimal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at least one $A \in \mathcal{K}$.

- Packing number $m(n, k, t)$: the maximal size of a family $\mathcal{K} \subset\binom{[n]}{k}$ having the property that every t-set is contained in at most one $A \in \mathcal{K}$.

$$
m(n, k, t) \leq \frac{\binom{n}{t}}{\binom{k}{t}} \leq M(n, k, t) .
$$

Equalities hold if and only if there exists a Steiner system $S(t, k, n)$.

Rödl's nibble method

Erdős-Hanami's conjecture: $\lim _{n \rightarrow \infty} \frac{M(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1$.
This is equivalent to the conjecture $\lim _{n \rightarrow \infty} \frac{m(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1$.

Rödl's nibble method

Erdős-Hanami's conjecture: $\lim _{n \rightarrow \infty} \frac{M(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1$.
This is equivalent to the conjecture $\lim _{n \rightarrow \infty} \frac{m(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1$.
Rödl proved this conjecture. His method is known as Rödl's nibble or semi-random method, which applies in a much more general setting, dealing with covers in uniform hypergraphs.

Rödl's nibble method

Erdős-Hanami's conjecture: $\lim _{n \rightarrow \infty} \frac{M(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1$.
This is equivalent to the conjecture $\lim _{n \rightarrow \infty} \frac{m(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1$.
Rödl proved this conjecture. His method is known as Rödl's nibble or semi-random method, which applies in a much more general setting, dealing with covers in uniform hypergraphs.
Theorem (Pippenger): For an integer $r \geq 2$ and a real $\varepsilon>0$ there exists a real $\gamma=\gamma(r, \varepsilon)$ so that the following holds: If the r-uniform hypergraph H on n vertices satisfies:

1. For each vertex x, degree $d(x) \in[(1-\gamma) D,(1+\gamma) D]$.
2. For each pair of vertices x, y, codegree $d(x, y)<\gamma D$. then \exists a matching that covers all but at most ϵn vertices.

Rödl's nibble

Before nibble: A hypergraph $H=(V, E)$ with

1. For all but at most δn of vertex $x, d(x)=(1 \pm \delta) D$.
2. For any two $x, y, d(x, y)<\delta D$.

Select a random family \mathcal{F} of edges with probability $p=\epsilon / D$ independently. Then delete the vertices covered by \mathcal{F}.
After nibble:

1. $|\mathcal{F}| \approx \frac{\epsilon n}{r}\left(1 \pm \delta^{\prime}\right)$.
2. The remaining set of vertices V^{\prime} has size $n e^{-\epsilon}\left(1 \pm \delta^{\prime}\right)$.
3. For all but at most $\delta^{\prime}\left|V^{\prime}\right|$ of vertex x in the induced hypergraph on $V^{\prime}, d^{\prime}(x)=D e^{-\epsilon(r-1)}\left(1 \pm \delta^{\prime}\right)$.

Iteration

Choose $\epsilon>0$ and $\delta>0$ such that $\frac{\epsilon}{1-e^{-\epsilon}}+r \epsilon<1+\varepsilon$. Let $t=\left\lfloor\frac{-\ln \epsilon}{\epsilon}\right\rfloor$. Repeat Rödl nibbles t times.

Iteration

Choose $\epsilon>0$ and $\delta>0$ such that $\frac{\epsilon}{1-e^{-\epsilon}}+r \epsilon<1+\varepsilon$. Let $t=\left\lfloor\frac{-\ln \epsilon}{\epsilon}\right\rfloor$. Repeat Rödl nibbles t times. We get a sequence of

- $\delta_{t}>\delta_{t-1}>\cdots>t_{1}>t_{0}=\gamma$ satisfying

$$
\delta_{i} \leq \delta_{i+1} e^{-\epsilon(r-1)}, \quad \prod_{i=0}\left(1+\delta_{i}\right)<1+2 \delta .
$$

Iteration

Choose $\epsilon>0$ and $\delta>0$ such that $\frac{\epsilon}{1-e^{-\epsilon}}+r \epsilon<1+\varepsilon$. Let $t=\left\lfloor\frac{-\ln \epsilon}{\epsilon}\right\rfloor$. Repeat Rödl nibbles t times. We get a sequence of

■ $\delta_{t}>\delta_{t-1}>\cdots>t_{1}>t_{0}=\gamma$ satisfying

$$
\delta_{i} \leq \delta_{i+1} e^{-\epsilon(r-1)}, \quad \prod_{i=0}^{\iota}\left(1+\delta_{i}\right)<1+2 \delta .
$$

■ $\quad H=H_{0} \supsetneq H_{1} \supsetneq \cdots \supsetneq H_{t}$ satisfying

$$
\begin{aligned}
\left|V_{i}\right| & =\left|V_{i-1}\right| e^{-\epsilon}\left(1 \pm \delta_{i}\right) \\
\left|E_{i}\right| & =\frac{\epsilon\left|V_{i-1}\right|}{r}\left(1 \pm \delta_{i}\right) \\
D_{i} & =D_{i-1} e^{-\epsilon(r-1)} .
\end{aligned}
$$

Putting together

Note that $\mathcal{F}:=\cup_{i=1}^{t} \mathcal{F}_{i}$ covers all vertices except V_{t}. The vertices in V_{t} need at most $\left|V_{t}\right|$ additional edges to cover. The edges in the final cover is at most

$$
\begin{aligned}
\sum_{i=0}^{t-1} & \frac{\epsilon\left|V_{i}\right|}{r}\left(1+2 \delta_{i}\right)+\left|V_{t}\right| \\
& \leq(1+4 \delta) \frac{\epsilon n}{r} \frac{1}{1-e^{-\epsilon}}+(1+2 \delta) n e^{-\epsilon t} \\
\quad & <(1+\varepsilon) \frac{n}{r} .
\end{aligned}
$$

This complete the proof.

Improvement

Suppose that H is a r-uniform, D-regular hypergraph on n vertices with $\operatorname{codeg}(H)=C$. Let $\mathcal{U}(H)$ be the error term of a nearly perfect matching. There is a number of improvements on the error term.

- Grable [1996]: If $C=o(D / \ln n)$, then

$$
\mathcal{U}(H)=O\left(n\left(\frac{C \log n}{D}\right)^{1 /(2 r-1)+o(1)}\right)
$$

- Alon-Kim-Spencer [1997]: If $C=1$, then

$$
\begin{aligned}
& \mathcal{U}(H)=O\left(n\left(\frac{C}{D}\right)^{1 /(r-1)+o(1))}\right) \text { for } r \geq 4 \text { and } \\
& \mathcal{U}(H)=O\left(n\left(\frac{C}{D}\right)^{1 / 2} \log ^{3 / 2} D\right) \text { for } r=3 .
\end{aligned}
$$

- Vu [2000]: For all $r \geq 3, \exists c>0$, such that

$$
\mathcal{U}(H)=O\left(n\left(\frac{C \log n}{D}\right)^{1 /(r-1)} \log ^{c} D\right)
$$

