

Topic Course on Probabilistic Methods (Week 9) Large deviation inequalities (III)

Linyuan Lu

University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Large deviation inequality

- Talagrand's inequality
- Kim-Vu's inequality
 - Rödl's nibble method

 Ω_i : a probability space for $1 \le i \le n$.

Ω_i: a probability space for 1 ≤ i ≤ n.
 Ω := ∏ⁿ_{i=1} Ω_i.

- Ω_i : a probability space for $1 \le i \le n$. • $\Omega := \prod_{i=1}^n \Omega_i$.
- $\vec{\alpha} := (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a unit vector; $\alpha_i \ge 0$.

- $\Omega_i: \text{ a probability space for } 1 \le i \le n.$ $\Omega := \prod_{i=1}^n \Omega_i.$
- $\vec{\alpha} := (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a unit vector; $\alpha_i \ge 0$.
- $\rho(A, \vec{x})$: Talagrand's distance from $\vec{x} \in \Omega$ to $A \subset \Omega$:

$$\rho(A, \vec{x}) := \sup_{\vec{\alpha} : \|\vec{\alpha}\| = 1} \inf_{\vec{y} \in A} \sum_{i: x_i \neq y_i} \alpha_i.$$

- $\Omega_i: \text{ a probability space for } 1 \le i \le n.$ $\Omega := \prod_{i=1}^n \Omega_i.$
- $\vec{\alpha} := (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a unit vector; $\alpha_i \ge 0$.
- $\rho(A, \vec{x})$: Talagrand's distance from $\vec{x} \in \Omega$ to $A \subset \Omega$:

$$\rho(A, \vec{x}) := \sup_{\vec{\alpha} : \|\vec{\alpha}\| = 1} \inf_{\vec{y} \in A} \sum_{i: x_i \neq y_i} \alpha_i.$$

For any $t \ge 0$, $A_t = \{ \vec{x} \in \Omega \colon \rho(A, \vec{x}) \le t \}.$

- $\Omega_i: \text{ a probability space for } 1 \le i \le n.$ $\Omega := \prod_{i=1}^n \Omega_i.$
- $\vec{\alpha} := (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a unit vector; $\alpha_i \ge 0$.
- $\rho(A, \vec{x})$: Talagrand's distance from $\vec{x} \in \Omega$ to $A \subset \Omega$:

$$\rho(A, \vec{x}) := \sup_{\vec{\alpha} : \|\vec{\alpha}\| = 1} \inf_{\vec{y} \in A} \sum_{i: x_i \neq y_i} \alpha_i.$$

For any $t \ge 0$, $A_t = \{ \vec{x} \in \Omega \colon \rho(A, \vec{x}) \le t \}$.

Theorem [Talagrand's inequality]:

$$\Pr(A)(1 - \Pr(A_t)) \le e^{-t^2/4}.$$

 $U(A, \vec{x}) = \{ \vec{s} \in \{0, 1\}^n : \exists \vec{y} \in A, x_i \neq y_i \Rightarrow s_i = 1 \}.$ $V(A, \vec{x}) := \text{ the convex hull of } U(A, \vec{x}).$

 $U(A, \vec{x}) = \{ \vec{s} \in \{0, 1\}^n : \exists \vec{y} \in A, x_i \neq y_i \Rightarrow s_i = 1 \}.$ $V(A, \vec{x}) := \text{ the convex hull of } U(A, \vec{x}).$

Lemma: $\rho(A, \vec{x}) = \min_{\vec{v} \in V(A, \vec{x})} \|\vec{v}\|.$

 $U(A, \vec{x}) = \{ \vec{s} \in \{0, 1\}^n : \exists \vec{y} \in A, x_i \neq y_i \Rightarrow s_i = 1 \}.$ $V(A, \vec{x}) := \text{ the convex hull of } U(A, \vec{x}).$

Lemma: $\rho(A, \vec{x}) = \min_{\vec{v} \in V(A, \vec{x})} \|\vec{v}\|.$

Proof: Let $\vec{v} \in V(A, \vec{x})$ achieve this minimum. For any $\vec{s} \in V(A, \vec{x})$, we have $\vec{s} \cdot \vec{v} \ge \vec{v} \cdot \vec{v}$. Let $\vec{\alpha} = \vec{v}/||\vec{v}||$. We have

$$\rho(A, \vec{x}) \ge \inf_{\vec{y} \in A} \sum_{i: x_i \neq y_i} \alpha_i \ge \inf_{\vec{s} \in V(A, \vec{x})} \vec{s} \cdot \vec{\alpha} \ge \|\vec{v}\|.$$

 $U(A, \vec{x}) = \{ \vec{s} \in \{0, 1\}^n : \exists \vec{y} \in A, x_i \neq y_i \Rightarrow s_i = 1 \}.$ $V(A, \vec{x}) := \text{ the convex hull of } U(A, \vec{x}).$

Lemma: $\rho(A, \vec{x}) = \min_{\vec{v} \in V(A, \vec{x})} \|\vec{v}\|.$

Proof: Let $\vec{v} \in V(A, \vec{x})$ achieve this minimum. For any $\vec{s} \in V(A, \vec{x})$, we have $\vec{s} \cdot \vec{v} \ge \vec{v} \cdot \vec{v}$. Let $\vec{\alpha} = \vec{v}/||\vec{v}||$. We have

$$\rho(A, \vec{x}) \ge \inf_{\vec{y} \in A} \sum_{i: x_i \neq y_i} \alpha_i \ge \inf_{\vec{s} \in V(A, \vec{x})} \vec{s} \cdot \vec{\alpha} \ge \|\vec{v}\|.$$

Conversely, take any unit vector $\vec{\alpha}$. Write $\vec{v} = \sum_i \lambda_i \vec{s}_i$ for some $\vec{s}_i \in U(A, \vec{x})$, $\lambda_i \ge 0$, and $\sum_i \lambda_i = 1$. Since $\|\vec{v}\| \ge \sum_i \lambda_i (\vec{\alpha} \cdot \vec{s}_i)$, we have $\alpha \cdot \vec{s}_i \le \|\vec{v}\|$ for some i.

A general theorem

Talagrand actually proved the following theorem: **Theorem:** $\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} \leq \frac{1}{\Pr(A)}.$

A general theorem

Talagrand actually proved the following theorem:

Theorem: $\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} \leq \frac{1}{\Pr(A)}.$

Now we show this theorem implies Talagrand's inequality.

A general theorem

Talagrand actually proved the following theorem:

Theorem: $\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} \leq \frac{1}{\Pr(A)}.$

Now we show this theorem implies Talagrand's inequality. For fixed A, consider $X = \rho(A, \vec{x})$.

$$\Pr(\overline{A_t}) = \Pr(X > t) \leq \Pr(X \ge t)$$
$$= \Pr(e^{X^2/4} \ge e^{t^2/4})$$
$$\leq \operatorname{E}(e^{X^2/4})e^{-t^2/4}$$
$$\leq \frac{1}{\Pr(A)}e^{-t^2/4}.$$

Hence,
$$\Pr(A)\Pr(\overline{A_t}) \le e^{-t^2/4}$$

Now prove $\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} \leq \frac{1}{\Pr(A)}$ by induction on n.

Now prove $\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} \leq \frac{1}{\Pr(A)}$ by induction on n. When n = 1, $\rho(A, \vec{x}) = 1$ if $\vec{x} \notin A$; and 0 if $\vec{x} \in A$.

$$\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} = \Pr(A) + (1 - \Pr(A))e^{1/4} \le \frac{1}{\Pr(A)}.$$

Now prove $\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} \leq \frac{1}{\Pr(A)}$ by induction on n. When n = 1, $\rho(A, \vec{x}) = 1$ if $\vec{x} \notin A$; and 0 if $\vec{x} \in A$.

$$\int_{\Omega} e^{\frac{1}{4}\rho^2(A,\vec{x})} d\vec{x} = \Pr(A) + (1 - \Pr(A))e^{1/4} \le \frac{1}{\Pr(A)}.$$

Assume it holds for n. For any $z \in \Omega$, write $z = (x, \omega)$ with $x \in \prod_{i=1}^{n} \Omega_i$ and $\omega \in \Omega_{n+1}$. Let $B = \{x \in \prod_{i=1}^{n} \Omega_i \colon (x, \omega) \in A \text{ for some } \omega \in \Omega_{n+1}.\}$ $A_{\omega} = \{x \in \prod_{i=1}^{n} \Omega_i \colon (x, \omega) \in A\}, \text{ for } \omega \in \Omega_{n+1}.$

Two ways to move $z = (x, \omega) \in \Omega$ to A:

By changing ω , it reduces the problem to moving from x to B. $\vec{s} \in U(B, x) \Rightarrow (\vec{s}, 1) \in U(A, (x, \omega))$.

Two ways to move $z = (x, \omega) \in \Omega$ to A:

- By changing ω , it reduces the problem to moving from x to B. $\vec{s} \in U(B, x) \Rightarrow (\vec{s}, 1) \in U(A, (x, \omega))$.
- By not changing ω , it reduces the problem to moving from x to A_{ω} . $\vec{t} \in U(A_{\omega}, x) \Rightarrow (\vec{t}, 0) \in U(A, (x, \omega))$.

Two ways to move $z = (x, \omega) \in \Omega$ to A:

- By changing ω , it reduces the problem to moving from x to B. $\vec{s} \in U(B, x) \Rightarrow (\vec{s}, 1) \in U(A, (x, \omega))$.
- By not changing ω , it reduces the problem to moving from x to A_{ω} . $\vec{t} \in U(A_{\omega}, x) \Rightarrow (\vec{t}, 0) \in U(A, (x, \omega))$.

Taking the convex hulls, if $\vec{s} \in V(B, x)$ and $\vec{t} \in V(A_{\omega}, x)$, then for any $\lambda \in [0, 1]$,

$$((1-\lambda)\vec{s}+\lambda\vec{t},1-\lambda) \in V(A,(x,\omega)).$$

Two ways to move $z = (x, \omega) \in \Omega$ to A:

- By changing ω , it reduces the problem to moving from x to B. $\vec{s} \in U(B, x) \Rightarrow (\vec{s}, 1) \in U(A, (x, \omega))$.
- By not changing ω , it reduces the problem to moving from x to A_{ω} . $\vec{t} \in U(A_{\omega}, x) \Rightarrow (\vec{t}, 0) \in U(A, (x, \omega))$.

Taking the convex hulls, if $\vec{s} \in V(B, x)$ and $\vec{t} \in V(A_{\omega}, x)$, then for any $\lambda \in [0, 1]$,

$$((1-\lambda)\vec{s}+\lambda\vec{t},1-\lambda) \in V(A,(x,\omega)).$$

$$\rho^{2}(A,(x,\omega)) \leq (1-\lambda)^{2} + \|(1-\lambda)\vec{s}+\lambda\vec{t}\|^{2}$$

$$\leq (1-\lambda)^{2} + (1-\lambda)\|\vec{s}\|^{2} + \lambda\|\vec{t}\|^{2}.$$

Minimizing $\|\vec{s}\|$ and $\|\vec{t}\|$, we get

$$\rho^2(A, (x, \omega)) \le (1 - \lambda)^2 + \lambda \rho^2(A_\omega, x) + (1 - \lambda)\rho^2(B, x).$$

Minimizing $\|\vec{s}\|$ and $\|\vec{t}\|$, we get

$$\rho^2(A, (x, \omega)) \le (1 - \lambda)^2 + \lambda \rho^2(A_\omega, x) + (1 - \lambda)\rho^2(B, x).$$

Let
$$r = \frac{\Pr(A_{\omega})}{\Pr(B)} \leq 1$$
 and $f(\lambda, r) = e^{(1-\lambda)^2/4}r^{-\lambda}$. Then
$$\int_x e^{\frac{1}{4}\rho^2(A,(x,\omega))} dx \leq \frac{1}{\Pr(B)}f(\lambda, r).$$

Choose $\lambda = 1 + 2 \ln r$ for $e^{-1/2} \le r \le 1$ and $\lambda = 0$ otherwise. One can show $f(\lambda, r) \le 2 - r$. Thus,

$$\int_{x} e^{\frac{1}{4}\rho^{2}(A,(x,\omega))} dx \leq \frac{1}{\Pr(B)} \left(2 - \frac{\Pr(A_{\omega})}{\Pr(B)} \right).$$
$$\int_{w} \int_{x} e^{\frac{1}{4}\rho^{2}(A,(x,\omega))} dx d\omega \leq \frac{1}{\Pr(B)} \left(2 - \frac{\Pr(A)}{\Pr(B)} \right) \leq \frac{1}{\Pr(A)}. \quad \Box$$

 $A := (a_{ij})$ a random symmetric matrix of dimension $n \times n$.

- $A := (a_{ij})$ a random symmetric matrix of dimension $n \times n$.
- For $1 \le i \le j \le n$, a_{ij} are independent random variables with $|a_{ij}| \le 1$. Let $a_{ji} = a_{ij}$.

- $A := (a_{ij})$ a random symmetric matrix of dimension $n \times n$.
- For $1 \le i \le j \le n$, a_{ij} are independent random variables with $|a_{ij}| \le 1$. Let $a_{ji} = a_{ij}$.
- I The eigenvalues of A is listed as

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n.$$

 $A := (a_{ij})$ a random symmetric matrix of dimension $n \times n$.

- For $1 \le i \le j \le n$, a_{ij} are independent random variables with $|a_{ij}| \le 1$. Let $a_{ji} = a_{ij}$.
- I The eigenvalues of A is listed as

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n.$$

Theorem [Alon, Krivelevich, Vu, (2002)]: For every positive integer $1 \le s \le n$, the probability that λ_s deviates from its median by more than t is at most $4e^{-\frac{t^2}{32s^2}}$. The same estimate holds for the probability that λ_{n+1-s} deviates from its median by more than t.

 Ω : the product space of the entries a_{ij} , $1 \le i \le j \le n$.

- Ω : the product space of the entries a_{ij} , $1 \le i \le j \le n$.
- M: the median of s-th eigenvalue; i.e., $Pr(\lambda_s(A) \le M) = \frac{1}{2}.$

- Ω : the product space of the entries a_{ij} , $1 \le i \le j \le n$.
- M: the median of s-th eigenvalue; i.e., $Pr(\lambda_s(A) \leq M) = \frac{1}{2}$.
- \mathcal{A} : the event $\lambda_s(A) \leq M$.

- Ω : the product space of the entries a_{ij} , $1 \le i \le j \le n$.
- M: the median of s-th eigenvalue; i.e., $\Pr(\lambda_s(A) \leq M) = \frac{1}{2}$.
- \mathcal{A} : the event $\lambda_s(A) \leq M$.
 - \mathcal{B} : the event $\lambda_s(A) \ge M + t$.

- Ω : the product space of the entries a_{ij} , $1 \le i \le j \le n$.
- M: the median of s-th eigenvalue; i.e., $Pr(\lambda_s(A) \le M) = \frac{1}{2}.$
- \mathcal{A} : the event $\lambda_s(A) \leq M$.
 - $\quad \mathcal{B}: \text{ the event } \lambda_s(A) \ge M + t.$

It suffices to show $\mathcal{B}_{t'} \cap \mathcal{A} = \emptyset$. I.e., for any $B \in \mathcal{B}$ find an vector $\alpha = (\alpha_{ij})$, for any $A \in \mathcal{A}$, show

$$\sum_{(i,j):a_{ij}\neq b_{ij}} \alpha_{ij} \ge t' \left(\sum_{1\le i\le j\le n} \alpha_{ij}\right)^{1/2}$$

For $1 \le p \le s$, let $v^{(p)}$ be the p-th unit eigenvector of B.

For $1 \leq i \leq n$, let

$$\alpha_{ii} = \sum_{p=1}^{s} (v_i^{(p)})^2.$$

For $1 \leq i < j \leq n$, let

$$\alpha_{ij} = 2\sqrt{\sum_{p=1}^{s} (v_i^{(p)})^2} \sqrt{\sum_{p=1}^{s} (v_j^{(p)})^2}.$$

Claim 1: $\sum_{1 \le i \le j \le n} \alpha_{ij}^2 \le 2s^2$.

Claim 1: $\sum_{1 \le i \le j \le n} \alpha_{ij}^2 \le 2s^2$.

 $\sum_{1 \le i \le j \le n} \alpha_{ij}^2 = \sum_{i=1}^n \left(\sum_{n=1}^s (v_i^{(p)})^2 \right)^2$ $+4\sum_{1 \le i < j \le n} \left(\sum_{p=1}^{s} (v_i^{(p)})^2\right) \left(\sum_{n=1}^{s} (v_j^{(p)})^2\right)$ $\leq 2 \left(\sum_{i=1}^{n} \sum_{p=1}^{s} (v_i^{(p)})^2 \right)^2$ $= 2s^2$

Claim 2: $\sum_{a_{ij} \neq b_{ij}} \alpha_{ij} \geq \frac{t}{2}$.

Claim 2

Claim 2: $\sum_{a_{ij}\neq b_{ij}} \alpha_{ij} \geq \frac{t}{2}$. Fix $A \in \mathcal{A}$. Let $u = \sum_{p=1}^{s} c_p v^{(p)}$ be a unit vector in the span of the vectors $v^{(p)}$ which is orthogonal to the eigenvectors of the largest s - 1 eigenvalues of A. Then $\sum_{p=1}^{s} c_p^2 = 1$, $u'Au \leq \lambda_s(A) \leq M$, and $u'Bu \geq \lambda_s(B) \geq M + t$.

Claim 2

Claim 2: $\sum_{a_{ij}\neq b_{ij}} \alpha_{ij} \geq \frac{t}{2}$. Fix $A \in \mathcal{A}$. Let $u = \sum_{p=1}^{s} c_p v^{(p)}$ be a unit vector in the span of the vectors $v^{(p)}$ which is orthogonal to the eigenvectors of the largest s - 1 eigenvalues of A. Then $\sum_{p=1}^{s} c_p^2 = 1$, $u'Au \leq \lambda_s(A) \leq M$, and $u'Bu \geq \lambda_s(B) \geq M + t$.

Putting together

 $\sum_{(i,j):a_{ij}\neq b_{ij}} \alpha_{ij} \geq \frac{t}{2\sqrt{2}s} \left(\sum_{1 < i < n} \alpha_{ij}\right)^{1/2}.$

The Talagrand distance between \mathcal{A} and \mathcal{B} is at least $\frac{t}{2\sqrt{2}s}$.

Putting together

$$\sum_{(i,j):a_{ij}\neq b_{ij}} \alpha_{ij} \geq \frac{t}{2\sqrt{2}s} \left(\sum_{1 \leq i \leq j \leq n} \alpha_{ij}\right)^{1/2}$$

The Talagrand distance between \mathcal{A} and \mathcal{B} is at least $\frac{t}{2\sqrt{2}s}$. Applying Talagrand's inequality, we get

$$\Pr(\mathcal{A})\Pr(\mathcal{B}) \le e^{-t^2/32s^2}$$

Hence, $\Pr(\lambda_s \ge m+t) \le 2e^{-t^2/32s^2}$. Similar we get $\Pr(\lambda_s \le m-t) \le 2e^{-t^2/32s^2}$. Hence

$$\Pr(|\lambda_s - m| \ge t) \le 4e^{-t^2/32s^2}.$$

More on eigenvalues

Let $A = (a_{ij})$ be a random symmetric $(n \times n)$ -matrix with independent entry a_{ij} $(1 \le i \le j \le n)$ satisfying $|a_{ij}| \le K$ and $E(a_{ij}) = 0$.

• Vu [2007]: If $Var(a_{ij}) \leq \sigma^2$, then

$$||A|| \le 2\sigma\sqrt{n} + C(K\sigma)^{1/2}n^{1/4}\ln n.$$

More on eigenvalues

Let $A = (a_{ij})$ be a random symmetric $(n \times n)$ -matrix with independent entry a_{ij} $(1 \le i \le j \le n)$ satisfying $|a_{ij}| \le K$ and $E(a_{ij}) = 0$.

• Vu [2007]: If $Var(a_{ij}) \leq \sigma^2$, then

$$||A|| \le 2\sigma\sqrt{n} + C(K\sigma)^{1/2}n^{1/4}\ln n.$$

■ Lu-Peng [2012+]: If $Var(a_{ij}) \leq \sigma_{ij}^2$, then

$$||A|| \le 2\sqrt{\Delta} + C\sqrt{K}\Delta^{1/4}\ln n,$$

where $\Delta = \max_{1 \le i \le n} \sum_{j=1}^{n} \sigma_{ij}^2$.

General applications

- $\Omega := \prod_{i=1}^{n} \Omega_i.$
 - $h: \Omega \to \mathbb{R}$: a Lipschitz function.
 - Given $f: N \to N$, h is f-certifiable if whenever $h(x) \ge s$ there exists $I \subset [n]$ with $|I| \le f(s)$ so that all $y \in \Omega$ that agree with x on the coordinates I have $h(y) \ge s$.

General applications

- $h: \Omega \to \mathbb{R}$: a Lipschitz function.
- Given $f: N \to N$, h is f-certifiable if whenever $h(x) \ge s$ there exists $I \subset [n]$ with $|I| \le f(s)$ so that all $y \in \Omega$ that agree with x on the coordinates I have $h(y) \ge s$.

Example: Let $\Omega = G(n, p)$ and h(G) be the number of triangles in G. Then h is f-certifiable with f(s) = 3s.

Theorem

Theorem: Suppose $X = h(\cdot)$ is *f*-certifiable. For any positive *b* and *t*, we have

$$\Pr(X \le b - t\sqrt{f(b)})\Pr(X \ge b) \le e^{-t^2/4}.$$

Theorem

Theorem: Suppose $X = h(\cdot)$ is *f*-certifiable. For any positive *b* and *t*, we have

$$\Pr(X \le b - t\sqrt{f(b)})\Pr(X \ge b) \le e^{-t^2/4}$$

Proof: Set $A = \{x : h(x) \le b - t\sqrt{f(b)}\}$. We claim for any y with $h(y) \ge b$, $y \notin A_t$.

Theorem

Theorem: Suppose $X = h(\cdot)$ is *f*-certifiable. For any positive *b* and *t*, we have

$$\Pr(X \le b - t\sqrt{f(b)})\Pr(X \ge b) \le e^{-t^2/4}$$

Proof: Set $A = \{x : h(x) \le b - t\sqrt{f(b)}\}$. We claim for any y with $h(y) \ge b$, $y \notin A_t$.

Let I be a set of indices of size at most f(b) that certifies $h(y) \ge b$. Define $\alpha_i = |I|^{-1/2}$ if $i \in I$, and 0 otherwise. For any $x \in A$, $\sum_{x_i \neq y_i} \alpha_i \ge t \sqrt{f(b)} |I|^{-1/2} \ge t$. By Talagrand's inequality,

$$\Pr(X \le b - t\sqrt{f(b)})\Pr(X \ge b) \le e^{-t^2/4}. \quad \Box$$

Kim-Vu's inequality

H = (V, E): a hypergraph
Y := ∑_{F∈E(H)} w_F ∏_{i∈F} t_i, a polynomial of degree k with non-negative coefficients w_F.
For each A ⊂ V(H), let Y_A = ∑_{F∈E(H),A⊂F} w_F ∏_{i∈F-A} t_i, the partial derivative of Y with respect to the t_i, i ∈ A.
E_i := max{E(Y_A): |A| = i}.
E' := max{E_i : 1 ≤ i ≤ k}.
E := max{E(Y), E'}.

Theorem [Kim-Vu 2000]:

$$\Pr(|Y - E(Y)| > a_k(EE')^{1/2}\lambda^k) < d_k e^{-\lambda} n^{k-1},$$

where $a_k = 8^k \sqrt{k!}$, $d_k = 2e^2$.

Examples

Counting triangles in G(n, p):

Let p = n^{-α} with 0 < α < ²/₃.
 For any vertex v, let Y := Y(v) be the number of triangles containing v. Y = ∑_{i,j≠v} t_{vi}t_{vj}t_{ij}.

Now $\mu := E(Y) = {\binom{n-1}{2}}p^3 \sim \frac{1}{2}n^{2-3\alpha}$ and $E' \sim \max\{np^2, 1\} = c\mu n^{-\epsilon}$ for some ϵ depending on α . Applying Kim-Vu's inequality, we have

$$\Pr(|Y - \mu| > \delta\mu) \le Cn^2 e^{-C'n^{\epsilon/6}}.$$

Almost surely every vertex v is in $\sim \mu$ triangles.

Steiner System

A Steiner system with parameters t, k, n, written S(t, k, n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block.

Steiner System

A Steiner system with parameters t, k, n, written S(t, k, n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block.

Steiner system S(2,3,7):

Covering number M(n, k, t): the minimal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at least one $A \in \mathcal{K}$.

- Covering number M(n, k, t): the minimal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at least one $A \in \mathcal{K}$.
- Packing number m(n, k, t): the maximal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at most one $A \in \mathcal{K}$.

- Covering number M(n, k, t): the minimal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at least one $A \in \mathcal{K}$.
- Packing number m(n, k, t): the maximal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at most one $A \in \mathcal{K}$.

$$m(n,k,t) \le \frac{\binom{n}{t}}{\binom{k}{t}} \le M(n,k,t).$$

- Covering number M(n, k, t): the minimal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at least one $A \in \mathcal{K}$.
- Packing number m(n, k, t): the maximal size of a family $\mathcal{K} \subset {[n] \choose k}$ having the property that every *t*-set is contained in at most one $A \in \mathcal{K}$.

$$m(n,k,t) \le \frac{\binom{n}{t}}{\binom{k}{t}} \le M(n,k,t).$$

Equalities hold if and only if there exists a Steiner system S(t,k,n).

Rödl's nibble method

Erdős-Hanami's conjecture: $\lim_{n \to \infty} \frac{M(n,k,t)}{\binom{n}{t} / \binom{k}{t}} = 1.$ This is equivalent to the conjecture $\lim_{n \to \infty} \frac{m(n,k,t)}{\binom{n}{t} / \binom{k}{t}} = 1.$

Rödl's nibble method

Erdős-Hanami's conjecture: $\lim_{n \to \infty} \frac{M(n,k,t)}{\binom{n}{t}/\binom{k}{t}} = 1.$ This is equivalent to the conjecture $\lim_{n \to \infty} \frac{m(n,k,t)}{\binom{n}{t}/\binom{k}{t}} = 1.$

Rödl proved this conjecture. His method is known as Rödl's nibble or semi-random method, which applies in a much more general setting, dealing with covers in uniform hypergraphs.

Rödl's nibble method

Erdős-Hanami's conjecture: $\lim_{n \to \infty} \frac{M(n,k,t)}{\binom{n}{t}/\binom{k}{t}} = 1.$ This is equivalent to the conjecture $\lim_{n \to \infty} \frac{m(n,k,t)}{\binom{n}{t}/\binom{k}{t}} = 1.$

Rödl proved this conjecture. His method is known as Rödl's nibble or semi-random method, which applies in a much more general setting, dealing with covers in uniform hypergraphs.

Theorem (Pippenger): For an integer $r \ge 2$ and a real $\varepsilon > 0$ there exists a real $\gamma = \gamma(r, \varepsilon)$ so that the following holds: If the *r*-uniform hypergraph *H* on *n* vertices satisfies:

1. For each vertex
$$x$$
, degree $d(x) \in [(1 - \gamma)D, (1 + \gamma)D]$.

2. For each pair of vertices x, y, codegree $d(x, y) < \gamma D$.

then \exists a matching that covers all but at most ϵn vertices.

Rödl's nibble

Before nibble: A hypergraph H = (V, E) with

- 1. For all but at most δn of vertex x, $d(x) = (1 \pm \delta)D$.
- 2. For any two x, y, $d(x, y) < \delta D$.

Select a random family \mathcal{F} of edges with probability $p = \epsilon/D$ independently. Then delete the vertices covered by \mathcal{F} . After nibble:

- 1. $|\mathcal{F}| \approx \frac{\epsilon n}{r} (1 \pm \delta').$
- 2. The remaining set of vertices V' has size $ne^{-\epsilon}(1 \pm \delta')$.
- 3. For all but at most $\delta'|V'|$ of vertex x in the induced hypergraph on V', $d'(x) = De^{-\epsilon(r-1)}(1 \pm \delta')$.

Iteration

Choose $\epsilon > 0$ and $\delta > 0$ such that $\frac{\epsilon}{1-e^{-\epsilon}} + r\epsilon < 1 + \epsilon$. Let $t = \lfloor \frac{-\ln \epsilon}{\epsilon} \rfloor$. Repeat Rödl nibbles t times.

Iteration

Choose $\epsilon > 0$ and $\delta > 0$ such that $\frac{\epsilon}{1-e^{-\epsilon}} + r\epsilon < 1+\epsilon$. Let $t = \lfloor \frac{-\ln \epsilon}{\epsilon} \rfloor$. Repeat Rödl nibbles t times. We get a sequence of

•
$$\delta_t > \delta_{t-1} > \cdots > t_1 > t_0 = \gamma$$
 satisfying
 $\delta_i \le \delta_{i+1} e^{-\epsilon(r-1)}, \quad \prod_{i=0}^t (1+\delta_i) < 1+2\delta.$

Iteration

Choose $\epsilon > 0$ and $\delta > 0$ such that $\frac{\epsilon}{1-e^{-\epsilon}} + r\epsilon < 1+\epsilon$. Let $t = \lfloor \frac{-\ln \epsilon}{\epsilon} \rfloor$. Repeat Rödl nibbles t times. We get a sequence of

•
$$\delta_t > \delta_{t-1} > \cdots > t_1 > t_0 = \gamma \text{ satisfying}$$

 $\delta_i \le \delta_{i+1} e^{-\epsilon(r-1)}, \quad \prod_{i=0}^t (1+\delta_i) < 1+2\delta.$

 $H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_t$ satisfying

$$|V_i| = |V_{i-1}|e^{-\epsilon}(1 \pm \delta_i)$$
$$|E_i| = \frac{\epsilon |V_{i-1}|}{r}(1 \pm \delta_i)$$
$$D_i = D_{i-1}e^{-\epsilon(r-1)}.$$

Putting together

Note that $\mathcal{F} := \bigcup_{i=1}^{t} \mathcal{F}_i$ covers all vertices except V_t . The vertices in V_t need at most $|V_t|$ additional edges to cover. The edges in the final cover is at most

$$\sum_{i=0}^{t-1} \frac{\epsilon |V_i|}{r} (1+2\delta_i) + |V_t|$$

$$\leq (1+4\delta) \frac{\epsilon n}{r} \frac{1}{1-e^{-\epsilon}} + (1+2\delta) n e^{-\epsilon t}$$

$$< (1+\epsilon) \frac{n}{r}.$$

This complete the proof.

Improvement

Suppose that H is a r-uniform, D-regular hypergraph on n vertices with codeg(H) = C. Let $\mathcal{U}(H)$ be the error term of a nearly perfect matching. There is a number of improvements on the error term.

Grable [1996]: If
$$C = o(D/\ln n)$$
, then
$$\mathcal{U}(H) = O\left(n\left(\frac{C\log n}{D}\right)^{1/(2r-1)+o(1)}\right).$$
Alon-Kim-Spencer [1997]: If $C = 1$, then
$$\mathcal{U}(H) = O\left(n\left(\frac{C}{D}\right)^{1/(r-1)+o(1))}\right) \text{ for } r \ge 4 \text{ and}$$

$$\mathcal{U}(H) = O\left(n\left(\frac{C}{D}\right)^{1/2}\log^{3/2}D\right) \text{ for } r = 3.$$
Vu [2000]: For all $r \ge 3$, $\exists c > 0$, such that
$$\mathcal{U}(H) = O\left(n\left(\frac{C\log n}{D}\right)^{1/(r-1)}\log^c D\right).$$