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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 3 / 35

■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Large deviation inequality

■ Martingale
■ Azuma’s inequality and applications
■ Variations
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A martingale is a sequence X0, X1, . . . , Xm of random
variables so that for 0 ≤ i < m,

E(Xi+1|Xi, . . . , X0) = Xi.



Martingale

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 5 / 35

A martingale is a sequence X0, X1, . . . , Xm of random
variables so that for 0 ≤ i < m,

E(Xi+1|Xi, . . . , X0) = Xi.
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a martingale. Typically, X0 = E(X) and Xm = X.



Martingale

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 5 / 35

A martingale is a sequence X0, X1, . . . , Xm of random
variables so that for 0 ≤ i < m,

E(Xi+1|Xi, . . . , X0) = Xi.

Let F0 ⊂ F1 ⊂ · · · ⊂ Fm be a chain of σ-algebras. For
0 ≤ i ≤ m, let Xi = E(X|Fi). Then X0, X1, . . . , Xm forms
a martingale. Typically, X0 = E(X) and Xm = X.

■ Vertex-exposure Martingale.
■ Edge-exposure Martingale.



Azuma’s inequality
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Theorem: Let E(X) = X0, . . . , Xm = X be a martingale
with

|Xi −Xi+1| ≤ 1

for all 0 ≤ i < m. For any λ > 0, Then

Pr(X − E(X) > λ) < e−
λ2

2m .
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Theorem: Let E(X) = X0, . . . , Xm = X be a martingale
with

|Xi −Xi+1| ≤ 1

for all 0 ≤ i < m. For any λ > 0, Then

Pr(X − E(X) > λ) < e−
λ2

2m .

Proof: Let Yi = Xi −Xi−1. We have

E(Yi|Xi−1, Xi−2, . . . , X0) = 0.

E(etYi|Xi−1, Xi−2, . . . , X0) ≤ cosh(t) ≤ et
2/2.



continue
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E(et(X−E(X))) = E(
m
∏

i=1

etYi)

≤ E

[(

m−1
∏

i=1

etYiE(etYm|Xm−1,Xm−2,...,X0)

)]

≤ E

[(

m−1
∏

i=1

etYi

)]

et
2/2 ≤ emt2/2.



Continue
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Pr(X − E(X) > λ) = Pr(et(X−E(X)) > etλ)

≤ e−tλE(et(X−E(X)))

≤ e−tλ+mt2/2.
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Pr(X − E(X) > λ) = Pr(et(X−E(X)) > etλ)

≤ e−tλE(et(X−E(X)))

≤ e−tλ+mt2/2.

Choose t = λ/m. We have

Pr(X − E(X) > λ) ≤ e−
λ2

2m .

�
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■ G = (V,E): a simple graph.



Application

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 9 / 35

■ G = (V,E): a simple graph.

■ A k-coloring c : V → [k] is proper if for any edge uv
c(u) 6= c(v).
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■ A k-coloring c : V → [k] is proper if for any edge uv
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■ The chromatic number χ(G) is the minimum integer k
such that there exists a proper k-coloring of G.
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■ G = (V,E): a simple graph.

■ A k-coloring c : V → [k] is proper if for any edge uv
c(u) 6= c(v).

■ G is k-colorable if there exists a proper k-coloring of G.

■ The chromatic number χ(G) is the minimum integer k
such that there exists a proper k-coloring of G.

Theorem [Shamir-Spencer (1987)]: For G = G(n, p),
we have

Pr(|χ(G)− E(χ(G))| > λ
√
n− 1) < 2e−λ2/2.



Proof
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Let X = χ(G). Consider the vertex exposure martingale of
X: E(X) = X1, . . . , Xn = X. Note that for 1 ≤ i ≤ n

|Xi −Xi−1| ≤ 1.
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Let X = χ(G). Consider the vertex exposure martingale of
X: E(X) = X1, . . . , Xn = X. Note that for 1 ≤ i ≤ n

|Xi −Xi−1| ≤ 1.

Apply Azumar’s inequality, we get

Pr(|χ(G)− E(χ(G))| > λ
√
n− 1) < 2e−λ2/2.

�



Vertex exposure martingale
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A graph function f is said to satisfy the vertex Lipshitz
condition if whenever H and H ′ differ at only one vertex,
|f(H)− f(H ′)| ≤ 1. Then

Pr
(

|f(G)− E(f(G))| > λ
√
n− 1

)

< 2e−λ2/2.
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A graph function f is said to satisfy the vertex Lipshitz
condition if whenever H and H ′ differ at only one vertex,
|f(H)− f(H ′)| ≤ 1. Then

Pr
(

|f(G)− E(f(G))| > λ
√
n− 1

)

< 2e−λ2/2.

A graph function f is said to satisfy the edge Lipshitz
condition if whenever H and H ′ differ at only one edge,
|f(H)− f(H ′)| ≤ 1. Then

Pr

(

|f(G)− E(f(G))| > λ

√

(

n

2

)

)

< 2e−λ2/2.



Tight concentration of χ(G)
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For sparse G = G(n, p), there is a better concentration
result. Let p = n−α.

■ Shamir-Spencer (1987): If α > 5
6 + ǫ, then χ(G) is

concentrated on at most five values.
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For sparse G = G(n, p), there is a better concentration
result. Let p = n−α.

■ Shamir-Spencer (1987): If α > 5
6 + ǫ, then χ(G) is

concentrated on at most five values.

■ Luczak (1991): If α > 5
6 + ǫ, then χ(G) is

concentrated in at most two values.

■ Alon-Krivelevich (1997): If α > 1
2 + ǫ, then χ(G) is

concentrated in at most two values.

Here we will prove a weaker result.
Theorem: For α > 5

6 + ǫ and p = n−α, let G = G(n, p).
Then χ(G) is concentrated on at most four values.



A Lemma
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Lemma: Let α, c be fixed, α > 5
6 + ǫ. Let p = n−α. Then

almost always every c
√
n vertices of G = G(n, p) may be

three-colored.
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Lemma: Let α, c be fixed, α > 5
6 + ǫ. Let p = n−α. Then

almost always every c
√
n vertices of G = G(n, p) may be

three-colored.

Proof: If not, let T be the minimal set such that is not
three-colorable. G|T has minimum degree at least 3. The
probability of existing such T with |T | < c

√
n is at most

c
√
n

∑

t=4

(

n

t

)(
(

t
2

)

3t/2

)

p3t/2 ≤
c
√
n

∑

t=4

(ne

t

)t
(

te

3

)3t/2

p3t/2

=

c
√
n

∑

t=4

(c2n
−ǫ)t = o(1).



Proof of Theorem
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Proof: Let ǫ > 0 be arbitrary small and let u = (n, p, ǫ) be
the least integer so that

Pr(χ(G) ≤ u) > ǫ.
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Let Y to be the minimal size of a set of vertices S for which
G− S may be u-colored. Y satisfies the vertex Lipschitz
condition.
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Proof: Let ǫ > 0 be arbitrary small and let u = (n, p, ǫ) be
the least integer so that

Pr(χ(G) ≤ u) > ǫ.

Let Y to be the minimal size of a set of vertices S for which
G− S may be u-colored. Y satisfies the vertex Lipschitz
condition. Apply Azuma’s inequality with
λ =

√

2(n− 1) ln(1/ǫ) = O(
√
n).

Pr(Y − E(Y ) > λ) < ǫ,

Pr(Y − E(Y ) < −λ) < ǫ.



Continue
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By definition of u, Pr(Y = 0) > ǫ. Hence E(Y ) ≤ λ.

Pr(Y ≥ 2λ) ≤ Pr(Y ≥ E(Y ) + λ) ≤ ǫ.



Continue
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By definition of u, Pr(Y = 0) > ǫ. Hence E(Y ) ≤ λ.

Pr(Y ≥ 2λ) ≤ Pr(Y ≥ E(Y ) + λ) ≤ ǫ.

With probability at least 1− ǫ there is a u-coloring of all but
at most O(

√
n) vertices. By the Lemma, with probability at

least 1− ǫ, these points my be colored with three further
colors. Thus G is u+ 3-colorable. Putting together, we have

Pr(u ≤ χ(G) ≤ u+ 3) ≥ 1− 3ǫ

where ǫ is arbitrarily small. �



Generalization

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 16 / 35

■ c := (c1, . . . , cn), where ci > 0.
■ A martingale E(X) = X0, X1, . . . , Xn = X is c-Lipschitz

if
|Xi −Xi−1| ≤ ci

for i = 1, 2, . . . , n.

Azuma’s inequality: If a martingale X is c-Lipschitz, then

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
∑n

i=1 c2
i .
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Let Y1, Y2, . . . , Yn be independent variables and
Y =

∑n
i=1 Yi. Let Xi = E(Y ) +

∑i
j=1(Yj − E(Yj)). Then

E(Y ) = X0, X1, . . . , Xn = Y forms a martingale.
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■ Inequalities on martingale can be applied to the sum of
independent random variables.
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Let Y1, Y2, . . . , Yn be independent variables and
Y =

∑n
i=1 Yi. Let Xi = E(Y ) +

∑i
j=1(Yj − E(Yj)). Then

E(Y ) = X0, X1, . . . , Xn = Y forms a martingale.

■ Inequalities on martingale can be applied to the sum of
independent random variables.

■ One may expect to generalize Chernoff-type inequalities
to martingales.
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We say X is a martingale associated with a filter F if

■ F := {F0,F1, . . . ,Fn} is a set of σ-algebras satisfying

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn.

■ X is a random variable and it is Fn-measurable.
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We say X is a martingale associated with a filter F if

■ F := {F0,F1, . . . ,Fn} is a set of σ-algebras satisfying

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn.

■ X is a random variable and it is Fn-measurable.

For 1 ≤ i ≤ n, let Xi = E(X|Fi). Then X0, X1, . . . , Xn

forms a martingale.

If a martingale E(Xn) = X0, X1, . . . , Xn is given, then one
can define Fi be the σ-algebra generated by X0, X1, . . . , Xi.



Variation I
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Theorem 1 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. |Xi −Xi−1| ≤ M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2(
∑n

i=1 σ2
i
+Mλ/3) .



Variation II
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Theorem 2 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤ Mi, for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2
∑n

i=1(σ
2
i
+M2

i
) .



Variation III
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Theorem 3 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤ ai +M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2(
∑n

i=1(σ
2
i
+a2

i
)+Mλ/3) .



Variation IV

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 22 / 35

Theorem 4 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤ Mi, for 1 ≤ i ≤ n.

Then, for any M , we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2(
∑n

i=1 σ2
i
+
∑

Mi>M (Mi−M)2+Mλ/3) .
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Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 23 / 35

g(y) = 2
∞
∑

k=2

yk−2

k!
=

2(ey − 1− y)

y2
.
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=
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g(y) = 2
∞
∑

k=2

yk−2

k!
=

2(ey − 1− y)

y2
.

Facts:

■ g(0) = 1.
■ g(y) ≤ 1, for y < 0.
■ g(y) is monotone increasing, for y ≥ 0.
■ For y < 3, we have

g(y) = 2
∞
∑

k=2

yk−2

k!
≤

∞
∑

k=2

yk−2

3k−2
=

1

1− y/3
.



Proof of Theorem 3
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Since E(Xi|Fi−1) = Xi−1 and Xi −Xi−1 − ai ≤ M , we have

E(et(Xi−Xi−1−ai)|Fi−1)

= E(
∞
∑

k=0

tk

k!
(Xi −Xi−1 − ai)

k|Fi−1)

= 1− tai + E(
∞
∑

k=2

tk

k!
(Xi −Xi−1 − ai)

k|Fi−1)

≤ 1− tai + E(
t2

2
(Xi −Xi−1 − ai)

2g(tM)|Fi−1)

= 1− tai +
t2

2
g(tM)E((Xi −Xi−1 − ai)

2|Fi−1)



Continue
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E(et(Xi−Xi−1−ai)|Fi−1)

≤ 1− tai +
t2

2
g(tM)E((Xi −Xi−1 − ai)

2|Fi−1)

= 1− tai +
t2

2
g(tM)(E((Xi −Xi−1)

2|Fi−1) + a2i )

≤ 1− tai +
t2

2
g(tM)(σ2

i + a2i )

≤ e−tai+
t2

2 g(tM)(σ2
i+a2i ).



Continue

Topic Course on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina – 25 / 35

E(et(Xi−Xi−1−ai)|Fi−1)

≤ 1− tai +
t2

2
g(tM)E((Xi −Xi−1 − ai)

2|Fi−1)

= 1− tai +
t2

2
g(tM)(E((Xi −Xi−1)

2|Fi−1) + a2i )

≤ 1− tai +
t2

2
g(tM)(σ2

i + a2i )

≤ e−tai+
t2

2 g(tM)(σ2
i+a2i ).

Thus, E(etXi|Fi−1) = E(et(Xi−Xi−1−ai)|Fi−1)e
tXi−1+tai

≤ e−tai+
t2

2 g(tM)(σ2
i+a2i )etXi−1+tai

= e
t2

2 g(tM)(σ2
i+a2i )etXi−1.



Continue
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Inductively, we have

E(etX) = E(E(etXn|Fn−1))

≤ e
t2

2 g(tM)(σ2
n+a2n)E(etXn−1)

≤ · · ·

≤
n
∏

i=1

e
t2

2 g(tM)(σ2
i+a2i )E(etX0)

= e
1
2 t

2g(tM)
∑n

i=1(σ
2
i+a2i )etE(X).



Continue
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Then for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλe
1
2 t

2g(tM)
∑n

i=1(σ
2
i+a2i )

= e−tλ+ 1
2 t

2g(tM)
∑n

i=1(σ
2
i+a2i )

≤ e−tλ+ 1
2

t2

1−tM/3

∑n
i=1(σ

2
i+a2i ).

We choose t = λ
∑n

i=1(σ
2
i+a2i )+Mλ/3

. Clearly tM < 3 and

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2

t2

1−tM/3

∑n
i=1(σ

2
i+a2i )

= e
− λ2

2(
∑n

i=1(σ
2
i
+a2

i
)+Mλ/3) . �
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For a filter F:

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

a sequence of random variables X0, X1, . . . , Xn is called a
supermartingale if Xi is Fi-measurable then
E(Xi | Fi−1) ≤ Xi−1, for 1 ≤ i ≤ n.
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For a filter F:

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

a sequence of random variables X0, X1, . . . , Xn is called a
supermartingale if Xi is Fi-measurable then
E(Xi | Fi−1) ≤ Xi−1, for 1 ≤ i ≤ n.

A sequence of random variables X0, X1, . . . , Xn is said to be
a submartingale if Xi is Fi-measurable and
E(Xi | Fi−1) ≥ Xi−1, for 1 ≤ i ≤ n.

Remark: In the reference [Chung-Lu 2006], the
terminologies of Supermartingale and submartingale were

swapped.
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Theorem 5: [Chung-Lu] Suppose a submartingale X,
associated with a filter F, satisfies, for 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

and
E(Xi|Fi−1)−Xi ≤ ai +M,

where M , ai’s, σi’s, and φi’s are non-negative constants.
Then we have

Pr(Xn ≤ X0 − λ) ≤ e
− λ2

2(
∑n

i=1(σ
2
i
+a2

i
)+X0(

∑n
i=1 φi)+Mλ/3) ,

for any λ ≤ 2X0 +
∑n

i=1(σ
2
i+a2i )

∑n
i=1 φi

.
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Theorem 6: [Chung-Lu] Suppose that a supermartingale
X, associated with a filter F, satisfies

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

and
Xi − E(Xi|Fi−1) ≤ ai +M

for 1 ≤ i ≤ n. Here σi, ai, φi and M are non-negative
constants. Then we have

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2(
∑n

i=1(σ
2
i
+a2

i
)+(X0+λ)(

∑n
i=1 φi)+Mλ/3) .
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Proof: For a positive t (to be chosen later), we consider

E(etXi|Fi−1)

= etE(Xi|Fi−1)+taiE(et(Xi−E(Xi|Fi−1)−ai)|Fi−1)

= etE(Xi|Fi−1)+tai

∞
∑

k=0

tk

k!
E((Xi − E(Xi|Fi−1)− ai)

k|Fi−1)

≤ etE(Xi|Fi−1)+
∑

∞

k=2
tk

k!E((Xi−E(Xi|Fi−1)−ai)
k|Fi−1)

≤ etE(Xi|Fi−1)+
g(tM)

2 t2(σ2
i+φiXi−1+a2i ).

We define ti ≥ 0 for 0 < i ≤ n, satisfying

ti−1 = ti +
g(t0M)

2
φit

2
i .
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E(etiXi|Fi−1) ≤ e(ti+
g(tiM)

2 φit
2
i )Xi−1e

t2i
2 g(tiM)(σ2

i+a2i )

≤ e(ti+
g(t0M)

2 t2iφi)Xi−1e
t2i
2 g(tiM)(σ2

i+a2i )

= eti−1Xi−1e
t2i
2 g(tiM)(σ2

i+a2i ).
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E(etiXi|Fi−1) ≤ e(ti+
g(tiM)

2 φit
2
i )Xi−1e

t2i
2 g(tiM)(σ2

i+a2i )

≤ e(ti+
g(t0M)

2 t2iφi)Xi−1e
t2i
2 g(tiM)(σ2

i+a2i )

= eti−1Xi−1e
t2i
2 g(tiM)(σ2

i+a2i ).

Iterating this bound, we get

E(etnXn) ≤ E(et0X0)e
∑n

i=1

t2i
2 g(tiM)(σ2

i+a2i ).
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E(etiXi|Fi−1) ≤ e(ti+
g(tiM)

2 φit
2
i )Xi−1e

t2i
2 g(tiM)(σ2

i+a2i )

≤ e(ti+
g(t0M)

2 t2iφi)Xi−1e
t2i
2 g(tiM)(σ2

i+a2i )

= eti−1Xi−1e
t2i
2 g(tiM)(σ2

i+a2i ).

Iterating this bound, we get

E(etnXn) ≤ E(et0X0)e
∑n

i=1

t2i
2 g(tiM)(σ2

i+a2i ).

By Markov’s inequality, we have

Pr(Xn ≥ X0 + λ) ≤ e−tn(X0+λ)E(etnXn)

≤ e−tn(X0+λ)+t0X0+
t20
2 g(t0M)

∑n
i=1(σ

2
i+a2i ).
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tn = t0 −
n
∑

i=1

(ti−1 − ti)

= t0 −
n
∑

i=1

g(t0M)

2
φit

2
i

≥ t0 −
g(t0M)

2
t20

n
∑

i=1

φi.
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tn = t0 −
n
∑

i=1

(ti−1 − ti)

= t0 −
n
∑

i=1

g(t0M)

2
φit

2
i

≥ t0 −
g(t0M)

2
t20

n
∑

i=1

φi.

Pr(Xn ≥ X0 + λ)

≤ e−tn(X0+λ)+t0X0+
t20
2 g(t0M)

∑n
i=1(σ

2
i+a2i )

≤ e−(t0− g(t0M)
2 t20

∑n
i=1 φi)(X0+λ)+t0X0+

t20
2 g(t0M)

∑n
i=1(σ

2
i+a2i )

= e−t0λ+
g(t0M)

2 t20(
∑n

i=1(σ
2
i+a2i )+(X0+λ)

∑n
i=1 φi).
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Now we choose t0 =
λ

∑n
i=1(σ

2
i+a2i )+(X0+λ)(

∑n
i=1 φi)+Mλ/3

. Using

the fact that t0M < 3, we have

Pr(Xn ≥ X0 + λ)

≤ e−t0λ+t20(
∑n

i=1(σ
2
i+a2i )+(X0+λ)

∑n
i=1 φi)

1
2(1−t0M/3)

= e
− λ2

2(
∑n

i=1(σ
2
i
+a2

i
)+(X0+λ)(

∑n
i=1 φi)+Mλ/3) .

The proof of the theorem is complete. �
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