Topic Course on Probabilistic Methods
 (Week 8)
 Large deviation inequalities (II)

Linyuan Lu
University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Large deviation inequality

- Martingale
- Azuma's inequality and applications

■ Variations

Martingale

A martingale is a sequence $X_{0}, X_{1}, \ldots, X_{m}$ of random variables so that for $0 \leq i<m$,

$$
\mathrm{E}\left(X_{i+1} \mid X_{i}, \ldots, X_{0}\right)=X_{i} .
$$

Martingale

A martingale is a sequence $X_{0}, X_{1}, \ldots, X_{m}$ of random variables so that for $0 \leq i<m$,

$$
\mathrm{E}\left(X_{i+1} \mid X_{i}, \ldots, X_{0}\right)=X_{i} .
$$

Let $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{m}$ be a chain of σ-algebras. For $0 \leq i \leq m$, let $X_{i}=\mathrm{E}\left(X \mid \mathcal{F}_{i}\right)$. Then $X_{0}, X_{1}, \ldots, X_{m}$ forms a martingale. Typically, $X_{0}=\mathrm{E}(X)$ and $X_{m}=X$.

Martingale

A martingale is a sequence $X_{0}, X_{1}, \ldots, X_{m}$ of random variables so that for $0 \leq i<m$,

$$
\mathrm{E}\left(X_{i+1} \mid X_{i}, \ldots, X_{0}\right)=X_{i} .
$$

Let $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{m}$ be a chain of σ-algebras. For $0 \leq i \leq m$, let $X_{i}=\mathrm{E}\left(X \mid \mathcal{F}_{i}\right)$. Then $X_{0}, X_{1}, \ldots, X_{m}$ forms a martingale. Typically, $X_{0}=\mathrm{E}(X)$ and $X_{m}=X$.

■ Vertex-exposure Martingale.
■ Edge-exposure Martingale.

Azuma's inequality

Theorem: Let $\mathrm{E}(X)=X_{0}, \ldots, X_{m}=X$ be a martingale with

$$
\left|X_{i}-X_{i+1}\right| \leq 1
$$

for all $0 \leq i<m$. For any $\lambda>0$, Then

$$
\operatorname{Pr}(X-\mathrm{E}(X)>\lambda)<e^{-\frac{\lambda^{2}}{2 m}}
$$

Azuma's inequality

Theorem: Let $\mathrm{E}(X)=X_{0}, \ldots, X_{m}=X$ be a martingale with

$$
\left|X_{i}-X_{i+1}\right| \leq 1
$$

for all $0 \leq i<m$. For any $\lambda>0$, Then

$$
\operatorname{Pr}(X-\mathrm{E}(X)>\lambda)<e^{-\frac{\lambda^{2}}{2 m}}
$$

Proof: Let $Y_{i}=X_{i}-X_{i-1}$. We have

$$
\begin{gathered}
\mathrm{E}\left(Y_{i} \mid X_{i-1}, X_{i-2}, \ldots, X_{0}\right)=0 \\
\mathrm{E}\left(e^{t Y_{i}} \mid X_{i-1}, X_{i-2}, \ldots, X_{0}\right) \leq \cosh (t) \leq e^{t^{2} / 2}
\end{gathered}
$$

continue

$$
\begin{aligned}
\mathrm{E}\left(e^{t(X-\mathrm{E}(X))}\right) & =\mathrm{E}\left(\prod_{i=1}^{m} e^{t Y_{i}}\right) \\
& \leq \mathrm{E}\left[\left(\prod_{i=1}^{m-1} e^{t Y_{i}} \mathrm{E}\left(e^{t Y_{m} \mid X_{m-1}, X_{m-2}, \ldots, X_{0}}\right)\right)\right] \\
& \leq \mathrm{E}\left[\left(\prod_{i=1}^{m-1} e^{t Y_{i}}\right)\right] e^{t^{2} / 2} \leq e^{m t^{2} / 2} .
\end{aligned}
$$

Continue

$$
\begin{aligned}
\operatorname{Pr}(X-\mathrm{E}(X)>\lambda) & =\operatorname{Pr}\left(e^{t(X-\mathrm{E}(X))}>e^{t \lambda}\right) \\
& \leq e^{-t \lambda} \mathrm{E}\left(e^{t(X-\mathrm{E}(X))}\right) \\
& \leq e^{-t \lambda+m t^{2} / 2} .
\end{aligned}
$$

Continue

$$
\begin{aligned}
\operatorname{Pr}(X-\mathrm{E}(X)>\lambda) & =\operatorname{Pr}\left(e^{t(X-\mathrm{E}(X))}>e^{t \lambda}\right) \\
& \leq e^{-t \lambda} \mathrm{E}\left(e^{t(X-\mathrm{E}(X))}\right) \\
& \leq e^{-t \lambda+m t^{2} / 2} .
\end{aligned}
$$

Choose $t=\lambda / m$. We have

$$
\operatorname{Pr}(X-\mathrm{E}(X)>\lambda) \leq e^{-\frac{\lambda^{2}}{2 m}}
$$

Application

$G=(V, E):$ a simple graph.

Application

- $G=(V, E)$: a simple graph.
- A k-coloring $c: V \rightarrow[k]$ is proper if for any edge $u v$ $c(u) \neq c(v)$.

Application

■ $G=(V, E)$: a simple graph.

- A k-coloring $c: V \rightarrow[k]$ is proper if for any edge $u v$ $c(u) \neq c(v)$.
■ G is k-colorable if there exists a proper k-coloring of G.

Application

■ $G=(V, E)$: a simple graph.

- A k-coloring $c: V \rightarrow[k]$ is proper if for any edge $u v$ $c(u) \neq c(v)$.
■ G is k-colorable if there exists a proper k-coloring of G.
- The chromatic number $\chi(G)$ is the minimum integer k such that there exists a proper k-coloring of G.

Application

■ $G=(V, E)$: a simple graph.

- A k-coloring $c: V \rightarrow[k]$ is proper if for any edge $u v$ $c(u) \neq c(v)$.
■ G is k-colorable if there exists a proper k-coloring of G.
■ The chromatic number $\chi(G)$ is the minimum integer k such that there exists a proper k-coloring of G.

Theorem [Shamir-Spencer (1987)]: For $G=G(n, p)$, we have

$$
\operatorname{Pr}(|\chi(G)-\mathrm{E}(\chi(G))|>\lambda \sqrt{n-1})<2 e^{-\lambda^{2} / 2}
$$

Proof

Let $X=\chi(G)$. Consider the vertex exposure martingale of $X: \mathrm{E}(X)=X_{1}, \ldots, X_{n}=X$. Note that for $1 \leq i \leq n$

$$
\left|X_{i}-X_{i-1}\right| \leq 1
$$

Proof

Let $X=\chi(G)$. Consider the vertex exposure martingale of $X: \mathrm{E}(X)=X_{1}, \ldots, X_{n}=X$. Note that for $1 \leq i \leq n$

$$
\left|X_{i}-X_{i-1}\right| \leq 1
$$

Apply Azumar's inequality, we get

$$
\operatorname{Pr}(|\chi(G)-\mathrm{E}(\chi(G))|>\lambda \sqrt{n-1})<2 e^{-\lambda^{2} / 2}
$$

Vertex exposure martingale

A graph function f is said to satisfy the vertex Lipshitz condition if whenever H and H^{\prime} differ at only one vertex, $\left|f(H)-f\left(H^{\prime}\right)\right| \leq 1$. Then

$$
\operatorname{Pr}(|f(G)-\mathrm{E}(f(G))|>\lambda \sqrt{n-1})<2 e^{-\lambda^{2} / 2} .
$$

Vertex exposure martingale

A graph function f is said to satisfy the vertex Lipshitz condition if whenever H and H^{\prime} differ at only one vertex, $\left|f(H)-f\left(H^{\prime}\right)\right| \leq 1$. Then

$$
\operatorname{Pr}(|f(G)-\mathrm{E}(f(G))|>\lambda \sqrt{n-1})<2 e^{-\lambda^{2} / 2} .
$$

A graph function f is said to satisfy the edge Lipshitz condition if whenever H and H^{\prime} differ at only one edge, $\left|f(H)-f\left(H^{\prime}\right)\right| \leq 1$. Then

$$
\operatorname{Pr}\left(|f(G)-\mathrm{E}(f(G))|>\lambda \sqrt{\binom{n}{2}}\right)<2 e^{-\lambda^{2} / 2}
$$

Tight concentration of $\chi(G)$

For sparse $G=G(n, p)$, there is a better concentration result. Let $p=n^{-\alpha}$.

Shamir-Spencer (1987): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated on at most five values.

Tight concentration of $\chi(G)$

For sparse $G=G(n, p)$, there is a better concentration result. Let $p=n^{-\alpha}$.

■ Shamir-Spencer (1987): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated on at most five values.

■ Luczak (1991): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated in at most two values.

Tight concentration of $\chi(G)$

For sparse $G=G(n, p)$, there is a better concentration result. Let $p=n^{-\alpha}$.

■ Shamir-Spencer (1987): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated on at most five values.

■ Luczak (1991): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated in at most two values.

■ Alon-Krivelevich (1997): If $\alpha>\frac{1}{2}+\epsilon$, then $\chi(G)$ is concentrated in at most two values.

Tight concentration of $\chi(G)$

For sparse $G=G(n, p)$, there is a better concentration result. Let $p=n^{-\alpha}$.

■ Shamir-Spencer (1987): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated on at most five values.

■ Luczak (1991): If $\alpha>\frac{5}{6}+\epsilon$, then $\chi(G)$ is concentrated in at most two values.

- Alon-Krivelevich (1997): If $\alpha>\frac{1}{2}+\epsilon$, then $\chi(G)$ is concentrated in at most two values.

Here we will prove a weaker result.
Theorem: For $\alpha>\frac{5}{6}+\epsilon$ and $p=n^{-\alpha}$, let $G=G(n, p)$. Then $\chi(G)$ is concentrated on at most four values.

A Lemma

> Lemma: Let α, c be fixed, $\alpha>\frac{5}{6}+\epsilon$. Let $p=n^{-\alpha}$. Then almost always every $c \sqrt{n}$ vertices of $G=G(n, p)$ may be three-colored.

A Lemma

Lemma: Let α, c be fixed, $\alpha>\frac{5}{6}+\epsilon$. Let $p=n^{-\alpha}$. Then almost always every $c \sqrt{n}$ vertices of $G=G(n, p)$ may be three-colored.

Proof: If not, let T be the minimal set such that is not three-colorable. $\left.G\right|_{T}$ has minimum degree at least 3 . The probability of existing such T with $|T|<c \sqrt{n}$ is at most

$$
\begin{aligned}
\sum_{t=4}^{c \sqrt{n}}\binom{n}{t}\left(\begin{array}{c}
t \\
2 \\
3 t / 2
\end{array}\right) p^{3 t / 2} & \leq \sum_{t=4}^{c \sqrt{n}}\left(\frac{n e}{t}\right)^{t}\left(\frac{t e}{3}\right)^{3 t / 2} p^{3 t / 2} \\
& =\sum_{t=4}^{c \sqrt{n}}\left(c_{2} n^{-\epsilon}\right)^{t}=o(1) .
\end{aligned}
$$

Proof of Theorem

Proof: Let $\epsilon>0$ be arbitrary small and let $u=(n, p, \epsilon)$ be the least integer so that

$$
\operatorname{Pr}(\chi(G) \leq u)>\epsilon .
$$

Proof of Theorem

Proof: Let $\epsilon>0$ be arbitrary small and let $u=(n, p, \epsilon)$ be the least integer so that

$$
\operatorname{Pr}(\chi(G) \leq u)>\epsilon .
$$

Let Y to be the minimal size of a set of vertices S for which $G-S$ may be u-colored. Y satisfies the vertex Lipschitz condition.

Proof of Theorem

Proof: Let $\epsilon>0$ be arbitrary small and let $u=(n, p, \epsilon)$ be the least integer so that

$$
\operatorname{Pr}(\chi(G) \leq u)>\epsilon
$$

Let Y to be the minimal size of a set of vertices S for which $G-S$ may be u-colored. Y satisfies the vertex Lipschitz condition. Apply Azuma's inequality with

$$
\lambda=\sqrt{2(n-1) \ln (1 / \epsilon)}=O(\sqrt{n}) .
$$

$$
\begin{array}{r}
\operatorname{Pr}(Y-\mathrm{E}(Y)>\lambda)<\epsilon, \\
\operatorname{Pr}(Y-\mathrm{E}(Y)<-\lambda)<\epsilon .
\end{array}
$$

Continue

By definition of $u, \operatorname{Pr}(Y=0)>\epsilon$. Hence $\mathrm{E}(Y) \leq \lambda$.

$$
\operatorname{Pr}(Y \geq 2 \lambda) \leq \operatorname{Pr}(Y \geq \mathrm{E}(Y)+\lambda) \leq \epsilon
$$

Continue

By definition of $u, \operatorname{Pr}(Y=0)>\epsilon$. Hence $\mathrm{E}(Y) \leq \lambda$.

$$
\operatorname{Pr}(Y \geq 2 \lambda) \leq \operatorname{Pr}(Y \geq \mathrm{E}(Y)+\lambda) \leq \epsilon
$$

With probability at least $1-\epsilon$ there is a u-coloring of all but at most $O(\sqrt{n})$ vertices. By the Lemma, with probability at least $1-\epsilon$, these points my be colored with three further colors. Thus G is $u+3$-colorable. Putting together, we have

$$
\operatorname{Pr}(u \leq \chi(G) \leq u+3) \geq 1-3 \epsilon
$$

where ϵ is arbitrarily small. \square

Generalization

- c $:=\left(c_{1}, \ldots, c_{n}\right)$, where $c_{i}>0$.

A martingale $\mathrm{E}(X)=X_{0}, X_{1}, \ldots, X_{n}=X$ is \mathbf{c}-Lipschitz if

$$
\left|X_{i}-X_{i-1}\right| \leq c_{i}
$$

for $i=1,2, \ldots, n$.
Azuma's inequality: If a martingale X is c-Lipschitz, then

$$
\operatorname{Pr}(|X-E(X)| \geq \lambda) \leq 2 e^{-\frac{\lambda^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}}
$$

Connection

> Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent variables and $Y=\sum_{i=1}^{n} Y_{i}$. Let $X_{i}=\mathrm{E}(Y)+\sum_{j=1}^{i}\left(Y_{j}-\mathrm{E}\left(Y_{j}\right)\right)$. Then $\mathrm{E}(Y)=X_{0}, X_{1}, \ldots, X_{n}=Y$ forms a martingale.

Connection

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent variables and $Y=\sum_{i=1}^{n} Y_{i}$. Let $X_{i}=\mathrm{E}(Y)+\sum_{j=1}^{i}\left(Y_{j}-\mathrm{E}\left(Y_{j}\right)\right)$. Then $\mathrm{E}(Y)=X_{0}, X_{1}, \ldots, X_{n}=Y$ forms a martingale.

■ Inequalities on martingale can be applied to the sum of independent random variables.

Connection

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent variables and $Y=\sum_{i=1}^{n} Y_{i}$. Let $X_{i}=\mathrm{E}(Y)+\sum_{j=1}^{i}\left(Y_{j}-\mathrm{E}\left(Y_{j}\right)\right)$. Then $\mathrm{E}(Y)=X_{0}, X_{1}, \ldots, X_{n}=Y$ forms a martingale.

- Inequalities on martingale can be applied to the sum of independent random variables.
- One may expect to generalize Chernoff-type inequalities to martingales.

Terminologies

We say X is a martingale associated with a filter \mathbf{F} if
■ $\mathbf{F}:=\left\{\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of σ-algebras satisfying

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}
$$

- X is a random variable and it is \mathcal{F}_{n}-measurable.

Terminologies

We say X is a martingale associated with a filter \mathbf{F} if
■ $\mathbf{F}:=\left\{\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of σ-algebras satisfying

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}
$$

- X is a random variable and it is \mathcal{F}_{n}-measurable.

For $1 \leq i \leq n$, let $X_{i}=\mathrm{E}\left(X \mid \mathcal{F}_{i}\right)$. Then $X_{0}, X_{1}, \ldots, X_{n}$ forms a martingale.

Terminologies

We say X is a martingale associated with a filter \mathbf{F} if
■ $\mathbf{F}:=\left\{\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of σ-algebras satisfying

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}
$$

- X is a random variable and it is \mathcal{F}_{n}-measurable.

For $1 \leq i \leq n$, let $X_{i}=\mathrm{E}\left(X \mid \mathcal{F}_{i}\right)$. Then $X_{0}, X_{1}, \ldots, X_{n}$ forms a martingale.

If a martingale $\mathrm{E}\left(X_{n}\right)=X_{0}, X_{1}, \ldots, X_{n}$ is given, then one can define \mathcal{F}_{i} be the σ-algebra generated by $X_{0}, X_{1}, \ldots, X_{i}$.

Variation I

Theorem 1 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

1. $\operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq \sigma_{i}^{2}$, for $1 \leq i \leq n$;
2. $\left|X_{i}-X_{i-1}\right| \leq M$, for $1 \leq i \leq n$.

Then, we have

$$
\operatorname{Pr}(X-E(X) \geq \lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\sum_{i=1}^{n} \sigma_{i}^{2}+M \lambda / 3\right)}}
$$

Variation II

Theorem 2 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

1. $\operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq \sigma_{i}^{2}$, for $1 \leq i \leq n$;
2. $X_{i}-X_{i-1} \leq M_{i}$, for $1 \leq i \leq n$.

Then, we have

$$
\operatorname{Pr}(X-E(X) \geq \lambda) \leq e^{-\frac{\lambda^{2}}{\left.2 \sum_{i=1}^{n} \sigma_{i}^{2}+M_{i}^{2}\right)}} .
$$

Variation III

Theorem 3 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

1. $\operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq \sigma_{i}^{2}$, for $1 \leq i \leq n$;
2. $X_{i}-X_{i-1} \leq a_{i}+M$, for $1 \leq i \leq n$.

Then, we have

$$
\operatorname{Pr}(X-E(X) \geq \lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+M \lambda / 3\right)}}
$$

Variation IV

Theorem 4 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

1. $\operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq \sigma_{i}^{2}$, for $1 \leq i \leq n$;
2. $X_{i}-X_{i-1} \leq M_{i}$, for $1 \leq i \leq n$.

Then, for any M, we have

$$
\operatorname{Pr}(X-E(X) \geq \lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\sum_{i=1}^{n} \sigma_{i}^{2}+\sum_{M_{i}>}>M^{\left.\left(M_{i}-M\right)^{2}+M \lambda / 3\right)}\right.}}
$$

The function $g(y)$

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

The function $g(y)$

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

$$
g(0)=1 .
$$

The function $g(y)$

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

$$
\begin{aligned}
& g(0)=1 \\
& g(y) \leq 1, \text { for } y<0 .
\end{aligned}
$$

The function $g(y)$

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

- $g(0)=1$.
- $g(y) \leq 1$, for $y<0$.
- $g(y)$ is monotone increasing, for $y \geq 0$.

The function $g(y)$

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

- $g(0)=1$.
- $g(y) \leq 1$, for $y<0$.
- $g(y)$ is monotone increasing, for $y \geq 0$.

For $y<3$, we have

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} \leq \sum_{k=2}^{\infty} \frac{y^{k-2}}{3^{k-2}}=\frac{1}{1-y / 3} .
$$

Proof of Theorem 3

Since $\mathrm{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right)=X_{i-1}$ and $X_{i}-X_{i-1}-a_{i} \leq M$, we have

$$
\begin{aligned}
& \mathrm{E}\left(e^{t\left(X_{i}-X_{i-1}-a_{i}\right)} \mid \mathcal{F}_{i-1}\right) \\
&=\mathrm{E}\left(\left.\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left(X_{i}-X_{i-1}-a_{i}\right)^{k} \right\rvert\, \mathcal{F}_{i-1}\right) \\
& \quad=1-t a_{i}+\mathrm{E}\left(\left.\sum_{k=2}^{\infty} \frac{t^{k}}{k!}\left(X_{i}-X_{i-1}-a_{i}\right)^{k} \right\rvert\, \mathcal{F}_{i-1}\right) \\
& \quad \leq 1-t a_{i}+\mathrm{E}\left(\left.\frac{t^{2}}{2}\left(X_{i}-X_{i-1}-a_{i}\right)^{2} g(t M) \right\rvert\, \mathcal{F}_{i-1}\right) \\
& \quad=1-t a_{i}+\frac{t^{2}}{2} g(t M) \mathrm{E}\left(\left(X_{i}-X_{i-1}-a_{i}\right)^{2} \mid \mathcal{F}_{i-1}\right)
\end{aligned}
$$

Continue

$$
\begin{aligned}
& \mathrm{E}\left(e^{t\left(X_{i}-X_{i-1}-a_{i}\right)} \mid \mathcal{F}_{i-1}\right) \\
& \leq 1-t a_{i}+\frac{t^{2}}{2} g(t M) \mathrm{E}\left(\left(X_{i}-X_{i-1}-a_{i}\right)^{2} \mid \mathcal{F}_{i-1}\right) \\
&=1-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\mathrm{E}\left(\left(X_{i}-X_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right)+a_{i}^{2}\right) \\
& \leq 1-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right) \\
& \leq e^{-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
\end{aligned}
$$

Continue

$$
\begin{aligned}
& \mathrm{E}\left(e^{t\left(X_{i}-X_{i-1}-a_{i}\right)} \mid \mathcal{F}_{i-1}\right) \\
& \leq 1-t a_{i}+\frac{t^{2}}{2} g(t M) \mathrm{E}\left(\left(X_{i}-X_{i-1}-a_{i}\right)^{2} \mid \mathcal{F}_{i-1}\right) \\
&=1-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\mathrm{E}\left(\left(X_{i}-X_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right)+a_{i}^{2}\right) \\
& \leq 1-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right) \\
& \leq e^{-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
\end{aligned}
$$

Thus, $\mathrm{E}\left(e^{t X_{i}} \mid \mathcal{F}_{i-1}\right)=\mathrm{E}\left(e^{t\left(X_{i}-X_{i-1}-a_{i}\right)} \mid \mathcal{F}_{i-1}\right) e^{t X_{i-1}+t a_{i}}$

$$
\begin{aligned}
& \leq e^{-t a_{i}+\frac{t^{2}}{2} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} e^{t X_{i-1}+t a_{i}} \\
& =e^{\frac{t^{2}}{2} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} e^{t X_{i-1}} .
\end{aligned}
$$

Continue

Inductively, we have

$$
\begin{aligned}
& \mathrm{E}\left(e^{t X}\right)=\mathrm{E}\left(\mathrm{E}\left(e^{t X_{n}} \mid \mathcal{F}_{n-1}\right)\right) \\
& \leq e^{t^{2} g(t M)\left(\sigma_{n}^{2}+a_{n}^{2}\right)} \mathrm{E}\left(e^{t X_{n-1}}\right) \\
& \leq \cdots \\
& \leq \prod_{i=1}^{n} e^{t^{2}} g(t M)\left(\sigma_{i}^{2}+a_{i}^{2}\right) \\
& \mathrm{E}\left(e^{t X_{0}}\right) \\
&=e^{\frac{1}{2} t^{2} g(t M) \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)} e^{t \mathrm{E}(X)} .
\end{aligned}
$$

Continue

Then for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \geq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda} e^{\frac{1}{2} t^{2} g(t M) \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& =e^{-t \lambda+\frac{1}{2} t^{2} g(t M) \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& \leq e^{-t \lambda+\frac{1}{2} \frac{t^{2}}{1-t M / 3} \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)} .
\end{aligned}
$$

We choose $t=\frac{\lambda}{\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+M \lambda / 3}$. Clearly $t M<3$ and

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & \leq e^{-t \lambda+\frac{1}{2} \frac{t^{2}}{1-t M / 3} \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& =e^{-\frac{\lambda^{2}}{2\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+M \lambda / 3\right)}} .
\end{aligned}
$$

Sub/super-martingales

For a filter \mathbf{F} :

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}=\mathcal{F}
$$

a sequence of random variables $X_{0}, X_{1}, \ldots, X_{n}$ is called a supermartingale if X_{i} is \mathcal{F}_{i}-measurable then
$E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq X_{i-1}$, for $1 \leq i \leq n$.

Sub/super-martingales

For a filter \mathbf{F} :

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}=\mathcal{F}
$$

a sequence of random variables $X_{0}, X_{1}, \ldots, X_{n}$ is called a supermartingale if X_{i} is \mathcal{F}_{i}-measurable then $E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq X_{i-1}$, for $1 \leq i \leq n$.
A sequence of random variables $X_{0}, X_{1}, \ldots, X_{n}$ is said to be a submartingale if X_{i} is \mathcal{F}_{i}-measurable and $E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \geq X_{i-1}$, for $1 \leq i \leq n$.

Sub/super-martingales

For a filter F:

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}=\mathcal{F}
$$

a sequence of random variables $X_{0}, X_{1}, \ldots, X_{n}$ is called a supermartingale if X_{i} is \mathcal{F}_{i}-measurable then $E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq X_{i-1}$, for $1 \leq i \leq n$.
A sequence of random variables $X_{0}, X_{1}, \ldots, X_{n}$ is said to be a submartingale if X_{i} is \mathcal{F}_{i}-measurable and $E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \geq X_{i-1}$, for $1 \leq i \leq n$.
Remark: In the reference [Chung-Lu 2006], the terminologies of Supermartingale and submartingale were swapped.

A submartingale inequality

Theorem 5: [Chung-Lu] Suppose a submartingale X, associated with a filter \mathbf{F}, satisfies, for $1 \leq i \leq n$,

$$
\operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq \sigma_{i}^{2}+\phi_{i} X_{i-1}
$$

and

$$
E\left(X_{i} \mid \mathcal{F}_{i-1}\right)-X_{i} \leq a_{i}+M
$$

where M, a_{i} 's, σ_{i} 's, and ϕ_{i} 's are non-negative constants.
Then we have

$$
\operatorname{Pr}\left(X_{n} \leq X_{0}-\lambda\right) \leq e^{-\frac{\lambda^{2}}{2\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+X_{0}\left(\sum_{i=1}^{n} \phi_{i}\right)+M \lambda / 3\right)}}
$$

for any $\lambda \leq 2 X_{0}+\frac{\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)}{\sum_{i=1}^{n} \phi_{i}}$.

A supermartingale inequality

Theorem 6: [Chung-Lu] Suppose that a supermartingale X, associated with a filter \mathbf{F}, satisfies

$$
\operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq \sigma_{i}^{2}+\phi_{i} X_{i-1}
$$

and

$$
X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq a_{i}+M
$$

for $1 \leq i \leq n$. Here $\sigma_{i}, a_{i}, \phi_{i}$ and M are non-negative constants. Then we have

$$
\operatorname{Pr}\left(X_{n} \geq X_{0}+\lambda\right) \leq e^{-\frac{\lambda^{2}}{2\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+\left(X_{0}+\lambda\right)\left(\sum_{i=1}^{n} \phi_{i}\right)+M \lambda / 3\right)}}
$$

Proof of Theorem 6

Proof: For a positive t (to be chosen later), we consider

$$
\begin{aligned}
& E\left(e^{t X_{i}} \mid \mathcal{F}_{i-1}\right) \\
= & e^{t E\left(X_{i} \mid \mathcal{F}_{i-1}\right)+t a_{i}} E\left(e^{t\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)-a_{i}\right)} \mid \mathcal{F}_{i-1}\right) \\
= & e^{t E\left(X_{i} \mid \mathcal{F}_{i-1}\right)+t a_{i}} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} E\left(\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)-a_{i}\right)^{k} \mid \mathcal{F}_{i-1}\right) \\
\leq & e^{t E\left(X_{i} \mid \mathcal{F}_{i-1}\right)+\sum_{k=2}^{\infty} \frac{t^{k}}{k!} E\left(\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)-a_{i}\right)^{k} \mid \mathcal{F}_{i-1}\right)} \\
\leq & e^{t E\left(X_{i} \mid \mathcal{F}_{i-1}\right)+\frac{g(t M)}{2} t^{2}\left(\sigma_{i}^{2}+\phi_{i} X_{i-1}+a_{i}^{2}\right)}
\end{aligned}
$$

We define $t_{i} \geq 0$ for $0<i \leq n$, satisfying

$$
t_{i-1}=t_{i}+\frac{g\left(t_{0} M\right)}{2} \phi_{i} t_{i}^{2}
$$

continue

$$
\begin{aligned}
E\left(e^{t_{i} X_{i}} \mid \mathcal{F}_{i-1}\right) & \leq e^{\left(t_{i}+\frac{g\left(t_{i} M\right)}{2} \phi_{i} t_{i}^{2}\right) X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& \leq e^{\left(t_{i}+\frac{g\left(t_{0} M\right)}{2} t_{i}^{2} \phi_{i}\right) X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& =e^{t_{i-1} X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
\end{aligned}
$$

continue

$$
\begin{aligned}
E\left(e^{t_{i} X_{i}} \mid \mathcal{F}_{i-1}\right) & \leq e^{\left(t_{i}+\frac{g\left(t_{i} M\right)}{2} \phi_{i} t_{i}^{2}\right) X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& \leq e^{\left(t_{i}+\frac{g\left(t_{0} M\right)}{2} t_{i}^{2} \phi_{i}\right) X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& =e^{t_{i-1} X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
\end{aligned}
$$

Iterating this bound, we get

$$
E\left(e^{t_{n} X_{n}}\right) \leq E\left(e^{t_{0} X_{0}}\right) e^{\sum_{i=1}^{n} \frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
$$

continue

$$
\begin{aligned}
E\left(e^{t_{i} X_{i}} \mid \mathcal{F}_{i-1}\right) & \leq e^{\left(t_{i}+\frac{g\left(t_{i} M\right)}{2} \phi_{i} t_{i}^{2}\right) X_{i-1}} e^{\frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& \leq e^{\left(t_{i}+\frac{g\left(t_{0} M\right.}{2} t_{i}^{2} \phi_{i}\right) X_{i-1}} e^{\frac{t_{2}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} \\
& =e^{t_{i-1} X_{i-1}} e^{\frac{t_{2}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} .
\end{aligned}
$$

Iterating this bound, we get

$$
E\left(e^{t_{n} X_{n}}\right) \leq E\left(e^{t_{0} X_{0}}\right) e^{\sum_{i=1}^{n} \frac{t_{i}^{2}}{2} g\left(t_{i} M\right)\left(\sigma_{i}^{2}+a_{i}^{2}\right)} .
$$

By Markov's inequality, we have

$$
\operatorname{Pr}\left(X_{n} \geq X_{0}+\lambda\right) \leq e^{-t_{n}\left(X_{0}+\lambda\right)} E\left(e^{t_{n} X_{n}}\right)
$$

$$
\leq e^{-t_{n}\left(X_{0}+\lambda\right)+t_{0} X_{0}+\frac{t_{0}^{2}}{2} g\left(t_{0} M\right) \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
$$

continue

$$
\begin{aligned}
t_{n} & =t_{0}-\sum_{i=1}^{n}\left(t_{i-1}-t_{i}\right) \\
& =t_{0}-\sum_{i=1}^{n} \frac{g\left(t_{0} M\right)}{2} \phi_{i} t_{i}^{2} \\
& \geq t_{0}-\frac{g\left(t_{0} M\right)}{2} t_{0}^{2} \sum_{i=1}^{n} \phi_{i} .
\end{aligned}
$$

continue

$$
\begin{aligned}
t_{n} & =t_{0}-\sum_{i=1}^{n}\left(t_{i-1}-t_{i}\right) \\
& =t_{0}-\sum_{i=1}^{n} \frac{g\left(t_{0} M\right)}{2} \phi_{i} t_{i}^{2} \\
& \geq t_{0}-\frac{g\left(t_{0} M\right)}{2} t_{0}^{2} \sum_{i=1}^{n} \phi_{i} .
\end{aligned}
$$

$$
\operatorname{Pr}\left(X_{n} \geq X_{0}+\lambda\right)
$$

$$
\leq e^{-t_{n}\left(X_{0}+\lambda\right)+t_{0} X_{0}+\frac{t_{0}^{2}}{2} g\left(t_{0} M\right) \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
$$

$$
\leq e^{-\left(t_{0}-\frac{g\left(t_{0} M\right)}{2} t_{0}^{2} \sum_{i=1}^{n} \phi_{i}\right)\left(X_{0}+\lambda\right)+t_{0} X_{0}+\frac{t_{0}^{2}}{2} g\left(t_{0} M\right) \sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)}
$$

$$
=e^{-t_{0} \lambda+\frac{g\left(t_{0} M\right)}{2} t_{0}^{2}\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+\left(X_{0}+\lambda\right) \sum_{i=1}^{n} \phi_{i}\right)}
$$

Continue

Now we choose $t_{0}=\frac{\lambda}{\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+\left(X_{0}+\lambda\right)\left(\sum_{i=1}^{n} \phi_{i}\right)+M \lambda / 3}$. Using the fact that $t_{0} M<3$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{n} \geq X_{0}+\lambda\right) \\
\leq & e^{-t_{0} \lambda+t_{0}^{2}\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+\left(X_{0}+\lambda\right) \sum_{i=1}^{n} \phi_{i}\right) \overline{1} 2\left(1-t_{0} M / 3\right)} \\
= & e^{-\frac{\overline{2\left(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+a_{i}^{2}\right)+\left(X_{0}+\lambda\right)\left(\sum_{i=1}^{n} \phi_{i}\right)+M \lambda / 3\right)}}{}} .
\end{aligned}
$$

The proof of the theorem is complete.

Reference

- C. McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics, edited by M. Habib, C. McDiarmid, J. Ramirez- Alfonsin, and B. Reed, pp. 195248, Algorithms and Combinatorics 16. Berlin: Springer, 1998.
- Chung and Lu, Concentration inequalities and martingale inequalities - a survey, Internet Mathematics, 3 (2006), No. 1, 79-127.
- Chung and Lu, Complex Graphs and Networks, (2006) published by AMS, ISBN-10: 0-8218-3657-9, ISBN-13: 978-0-8218-3657-6.

