

Linyuan Lu

University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Large deviation inequality

- Martingale
- Azuma's inequality and applications
- Variations

Martingale

A martingale is a sequence X_0, X_1, \ldots, X_m of random variables so that for $0 \le i < m$,

$$\mathrm{E}(X_{i+1}|X_i,\ldots,X_0)=X_i.$$

Martingale

A martingale is a sequence X_0, X_1, \ldots, X_m of random variables so that for $0 \le i < m$,

$$\mathrm{E}(X_{i+1}|X_i,\ldots,X_0)=X_i.$$

Let $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_m$ be a chain of σ -algebras. For $0 \leq i \leq m$, let $X_i = \mathrm{E}(X|\mathcal{F}_i)$. Then X_0, X_1, \ldots, X_m forms a martingale. Typically, $X_0 = \mathrm{E}(X)$ and $X_m = X$.

Martingale

A martingale is a sequence X_0, X_1, \ldots, X_m of random variables so that for $0 \le i < m$,

$$\mathrm{E}(X_{i+1}|X_i,\ldots,X_0)=X_i.$$

Let $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_m$ be a chain of σ -algebras. For $0 \leq i \leq m$, let $X_i = \mathrm{E}(X|\mathcal{F}_i)$. Then X_0, X_1, \ldots, X_m forms a martingale. Typically, $X_0 = \mathrm{E}(X)$ and $X_m = X$.

- Vertex-exposure Martingale.
- Edge-exposure Martingale.

Azuma's inequality

Theorem: Let $E(X) = X_0, \ldots, X_m = X$ be a martingale with

 $|X_i - X_{i+1}| \le 1$

for all $0 \leq i < m$. For any $\lambda > 0$, Then

$$\Pr(X - \mathcal{E}(X) > \lambda) < e^{-\frac{\lambda^2}{2m}}$$

Azuma's inequality

Theorem: Let $E(X) = X_0, \ldots, X_m = X$ be a martingale with

$$|X_i - X_{i+1}| \le 1$$

for all $0 \leq i < m$. For any $\lambda > 0$, Then

$$\Pr(X - \mathcal{E}(X) > \lambda) < e^{-\frac{\lambda^2}{2m}}$$

Proof: Let $Y_i = X_i - X_{i-1}$. We have

$$E(Y_i | X_{i-1}, X_{i-2}, \dots, X_0) = 0.$$
$$E(e^{tY_i} | X_{i-1}, X_{i-2}, \dots, X_0) \le \cosh(t) \le e^{t^2/2}.$$

$$E(e^{t(X-E(X))}) = E(\prod_{i=1}^{m} e^{tY_i})$$

$$\leq E\left[\left(\prod_{i=1}^{m-1} e^{tY_i}E(e^{tY_m|X_{m-1},X_{m-2},...,X_0})\right)\right]$$

$$\leq E\left[\left(\prod_{i=1}^{m-1} e^{tY_i}\right)\right]e^{t^2/2} \leq e^{mt^2/2}.$$

$$\Pr(X - \mathcal{E}(X) > \lambda) = \Pr(e^{t(X - \mathcal{E}(X))} > e^{t\lambda})$$
$$\leq e^{-t\lambda} \mathcal{E}(e^{t(X - \mathcal{E}(X))})$$
$$\leq e^{-t\lambda + mt^2/2}.$$

$$\Pr(X - \mathcal{E}(X) > \lambda) = \Pr(e^{t(X - \mathcal{E}(X))} > e^{t\lambda})$$
$$\leq e^{-t\lambda} \mathcal{E}(e^{t(X - \mathcal{E}(X))})$$
$$\leq e^{-t\lambda + mt^2/2}.$$

Choose $t = \lambda/m$. We have

$$\Pr(X - \mathcal{E}(X) > \lambda) \le e^{-\frac{\lambda^2}{2m}}.$$

• G = (V, E): a simple graph.

- G = (V, E): a simple graph.
- A k-coloring $c: V \to [k]$ is **proper** if for any edge uv $c(u) \neq c(v)$.

- G = (V, E): a simple graph.
 - A k-coloring $c: V \to [k]$ is **proper** if for any edge uv $c(u) \neq c(v)$.
 - G is k-colorable if there exists a proper k-coloring of G.

- G = (V, E): a simple graph.
 - A k-coloring $c: V \to [k]$ is **proper** if for any edge uv $c(u) \neq c(v)$.
 - G is k-colorable if there exists a proper k-coloring of G.
 - The **chromatic number** $\chi(G)$ is the minimum integer k such that there exists a proper k-coloring of G.

- G = (V, E): a simple graph.
 - A k-coloring $c: V \to [k]$ is **proper** if for any edge uv $c(u) \neq c(v)$.
 - G is k-colorable if there exists a proper k-coloring of G.
- The chromatic number $\chi(G)$ is the minimum integer k such that there exists a proper k-coloring of G.
- **Theorem [Shamir-Spencer (1987)]:** For G = G(n, p), we have

$$\Pr(|\chi(G) - \mathcal{E}(\chi(G))| > \lambda\sqrt{n-1}) < 2e^{-\lambda^2/2}$$

Proof

Let $X = \chi(G)$. Consider the vertex exposure martingale of X: $E(X) = X_1, \ldots, X_n = X$. Note that for $1 \le i \le n$

$$|X_i - X_{i-1}| \le 1.$$

Proof

Let $X = \chi(G)$. Consider the vertex exposure martingale of X: $E(X) = X_1, \ldots, X_n = X$. Note that for $1 \le i \le n$

$$|X_i - X_{i-1}| \le 1.$$

Apply Azumar's inequality, we get

 $\Pr(|\chi(G) - \operatorname{E}(\chi(G))| > \lambda\sqrt{n-1}) < 2e^{-\lambda^2/2}.$

Vertex exposure martingale

A graph function f is said to satisfy the **vertex Lipshitz** condition if whenever H and H' differ at only one vertex, $|f(H) - f(H')| \le 1$. Then

 $\Pr\left(|f(G) - \operatorname{E}(f(G))| > \lambda\sqrt{n-1}\right) < 2e^{-\lambda^2/2}.$

Vertex exposure martingale

A graph function f is said to satisfy the **vertex Lipshitz** condition if whenever H and H' differ at only one vertex, $|f(H) - f(H')| \le 1$. Then

$$\Pr\left(|f(G) - \operatorname{E}(f(G))| > \lambda\sqrt{n-1}\right) < 2e^{-\lambda^2/2}.$$

A graph function f is said to satisfy the **edge Lipshitz** condition if whenever H and H' differ at only one edge, $|f(H) - f(H')| \le 1$. Then

$$\Pr\left(|f(G) - \mathcal{E}(f(G))| > \lambda \sqrt{\binom{n}{2}}\right) < 2e^{-\lambda^2/2}$$

Topic Course on Probabilistic Methods (week 8)

 $\chi(G)$

For sparse G = G(n, p), there is a better concentration result. Let $p = n^{-\alpha}$.

Shamir-Spencer (1987): If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated on at most five values.

For sparse G = G(n, p), there is a better concentration result. Let $p = n^{-\alpha}$.

- Shamir-Spencer (1987): If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated on at most five values.
- **Luczak (1991)**: If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated in at most two values.

For sparse G=G(n,p), there is a better concentration result. Let $p=n^{-\alpha}.$

- Shamir-Spencer (1987): If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated on at most five values.
- **Luczak (1991)**: If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated in at most two values.
- Alon-Krivelevich (1997): If $\alpha > \frac{1}{2} + \epsilon$, then $\chi(G)$ is concentrated in at most two values.

For sparse G = G(n, p), there is a better concentration result. Let $p = n^{-\alpha}$.

- Shamir-Spencer (1987): If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated on at most five values.
- **Luczak (1991)**: If $\alpha > \frac{5}{6} + \epsilon$, then $\chi(G)$ is concentrated in at most two values.
- Alon-Krivelevich (1997): If $\alpha > \frac{1}{2} + \epsilon$, then $\chi(G)$ is concentrated in at most two values.

Here we will prove a weaker result. **Theorem:** For $\alpha > \frac{5}{6} + \epsilon$ and $p = n^{-\alpha}$, let G = G(n, p). Then $\chi(G)$ is concentrated on at most four values.

A Lemma

Lemma: Let α , c be fixed, $\alpha > \frac{5}{6} + \epsilon$. Let $p = n^{-\alpha}$. Then almost always every $c\sqrt{n}$ vertices of G = G(n, p) may be three-colored.

A Lemma

Lemma: Let α , c be fixed, $\alpha > \frac{5}{6} + \epsilon$. Let $p = n^{-\alpha}$. Then almost always every $c\sqrt{n}$ vertices of G = G(n, p) may be three-colored.

Proof: If not, let T be the minimal set such that is not three-colorable. $G|_T$ has minimum degree at least 3. The probability of existing such T with $|T| < c\sqrt{n}$ is at most

$$\sum_{t=4}^{c\sqrt{n}} \binom{n}{t} \binom{\binom{t}{2}}{3t/2} p^{3t/2} \leq \sum_{t=4}^{c\sqrt{n}} \binom{ne}{t}^t \left(\frac{te}{3}\right)^{3t/2} p^{3t/2}$$
$$= \sum_{t=4}^{c\sqrt{n}} (c_2 n^{-\epsilon})^t = o(1).$$

Proof: Let $\epsilon > 0$ be arbitrary small and let $u = (n, p, \epsilon)$ be the least integer so that

 $\Pr(\chi(G) \le u) > \epsilon.$

Proof: Let $\epsilon > 0$ be arbitrary small and let $u = (n, p, \epsilon)$ be the least integer so that

$$\Pr(\chi(G) \le u) > \epsilon.$$

Let Y to be the minimal size of a set of vertices S for which G - S may be u-colored. Y satisfies the vertex Lipschitz condition.

Proof: Let $\epsilon > 0$ be arbitrary small and let $u = (n, p, \epsilon)$ be the least integer so that

$$\Pr(\chi(G) \le u) > \epsilon.$$

Let Y to be the minimal size of a set of vertices S for which G-S may be u-colored. Y satisfies the vertex Lipschitz condition. Apply Azuma's inequality with $\lambda = \sqrt{2(n-1)\ln(1/\epsilon)} = O(\sqrt{n}).$

$$\Pr(Y - \mathcal{E}(Y) > \lambda) < \epsilon,$$

$$\Pr(Y - \mathcal{E}(Y) < -\lambda) < \epsilon.$$

By definition of u, $\Pr(Y = 0) > \epsilon$. Hence $\operatorname{E}(Y) \leq \lambda$.

$\Pr(Y \ge 2\lambda) \le \Pr(Y \ge \operatorname{E}(Y) + \lambda) \le \epsilon.$

By definition of u, $\Pr(Y = 0) > \epsilon$. Hence $\operatorname{E}(Y) \leq \lambda$.

 $\Pr(Y \ge 2\lambda) \le \Pr(Y \ge \operatorname{E}(Y) + \lambda) \le \epsilon.$

With probability at least $1 - \epsilon$ there is a *u*-coloring of all but at most $O(\sqrt{n})$ vertices. By the Lemma, with probability at least $1 - \epsilon$, these points my be colored with three further colors. Thus G is u + 3-colorable. Putting together, we have

$$\Pr(u \le \chi(G) \le u+3) \ge 1 - 3\epsilon$$

where ϵ is arbitrarily small.

Generalization

• $\mathbf{c} := (c_1, \dots, c_n)$, where $c_i > 0$. • A martingale $E(X) = X_0, X_1, \dots, X_n = X$ is c-Lipschitz if

$$|X_i - X_{i-1}| \le c_i$$

for
$$i = 1, 2, ..., n$$
.

Azuma's inequality: If a martingale X is c-Lipschitz, then

$$\Pr(|X - E(X)| \ge \lambda) \le 2e^{-\frac{\lambda^2}{2\sum_{i=1}^n c_i^2}}.$$

Connection

Let Y_1, Y_2, \ldots, Y_n be independent variables and $Y = \sum_{i=1}^n Y_i$. Let $X_i = E(Y) + \sum_{j=1}^i (Y_j - E(Y_j))$. Then $E(Y) = X_0, X_1, \ldots, X_n = Y$ forms a martingale.

Connection

Let Y_1, Y_2, \ldots, Y_n be independent variables and $Y = \sum_{i=1}^n Y_i$. Let $X_i = E(Y) + \sum_{j=1}^i (Y_j - E(Y_j))$. Then $E(Y) = X_0, X_1, \ldots, X_n = Y$ forms a martingale.

 Inequalities on martingale can be applied to the sum of independent random variables.

Connection

Let Y_1, Y_2, \ldots, Y_n be independent variables and $Y = \sum_{i=1}^n Y_i$. Let $X_i = E(Y) + \sum_{j=1}^i (Y_j - E(Y_j))$. Then $E(Y) = X_0, X_1, \ldots, X_n = Y$ forms a martingale.

- Inequalities on martingale can be applied to the sum of independent random variables.
- One may expect to generalize Chernoff-type inequalities to martingales.

We say X is a martingale associated with a filter \mathbf{F} if $\mathbf{F} := \{\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_n\}$ is a set of σ -algebras satisfying

$$\{\emptyset,\Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$$

X is a random variable and it is \mathcal{F}_n -measurable.

We say X is a martingale associated with a filter \mathbf{F} if $\mathbf{F} := \{\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_n\}$ is a set of σ -algebras satisfying

$$\{\emptyset,\Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$$

• X is a random variable and it is \mathcal{F}_n -measurable. For $1 \leq i \leq n$, let $X_i = E(X|\mathcal{F}_i)$. Then X_0, X_1, \ldots, X_n forms a martingale.

We say X is a martingale associated with a filter F if $\mathbf{F} := \{\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_n\}$ is a set of σ -algebras satisfying

$$\{\emptyset,\Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$$

• X is a random variable and it is \mathcal{F}_n -measurable. For $1 \leq i \leq n$, let $X_i = \mathrm{E}(X|\mathcal{F}_i)$. Then X_0, X_1, \ldots, X_n forms a martingale.

If a martingale $E(X_n) = X_0, X_1, \dots, X_n$ is given, then one can define \mathcal{F}_i be the σ -algebra generated by X_0, X_1, \dots, X_i .

Variation I

Theorem 1 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

- 1. $\operatorname{Var}(X_i | \mathcal{F}_{i-1}) \leq \sigma_i^2$, for $1 \leq i \leq n$;
- 2. $|X_i X_{i-1}| \le M$, for $1 \le i \le n$.

Then, we have

$$\Pr(X - E(X) \ge \lambda) \le e^{-\frac{\lambda^2}{2(\sum_{i=1}^n \sigma_i^2 + M\lambda/3)}}$$

Variation II

Theorem 2 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

- 1. $\operatorname{Var}(X_i | \mathcal{F}_{i-1}) \leq \sigma_i^2$, for $1 \leq i \leq n$;
- 2. $X_i X_{i-1} \le M_i$, for $1 \le i \le n$.

Then, we have

$$\Pr(X - E(X) \ge \lambda) \le e^{-\frac{\lambda^2}{2\sum_{i=1}^n (\sigma_i^2 + M_i^2)}}$$

Variation III

Theorem 3 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

- 1. $\operatorname{Var}(X_i | \mathcal{F}_{i-1}) \leq \sigma_i^2$, for $1 \leq i \leq n$;
- 2. $X_i X_{i-1} \le a_i + M$, for $1 \le i \le n$.

Then, we have

$$\Pr(X - E(X) \ge \lambda) \le e^{-\frac{\lambda^2}{2(\sum_{i=1}^n (\sigma_i^2 + a_i^2) + M\lambda/3)}}$$

Variation IV

Theorem 4 [Chung-Lu]: Let X be the martingale associated with a filter \mathbf{F} satisfying

- 1. $\operatorname{Var}(X_i | \mathcal{F}_{i-1}) \leq \sigma_i^2$, for $1 \leq i \leq n$;
- 2. $X_i X_{i-1} \leq M_i$, for $1 \leq i \leq n$.

Then, for any $\boldsymbol{M},$ we have

$$\Pr(X - E(X) \ge \lambda) \le e^{-\frac{\lambda^2}{2(\sum_{i=1}^n \sigma_i^2 + \sum_{M_i > M} (M_i - M)^2 + M\lambda/3)}}$$

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} = \frac{2(e^y - 1 - y)}{y^2}.$$

Facts:

 $\bullet \quad g(0) = 1.$

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} = \frac{2(e^y - 1 - y)}{y^2}.$$

Facts:

■ g(0) = 1. ■ $g(y) \le 1$, for y < 0.

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} = \frac{2(e^y - 1 - y)}{y^2}.$$

Facts:

 $\begin{array}{ll} & g(0)=1.\\ & g(y)\leq 1, \mbox{ for } y<0.\\ & g(y) \mbox{ is monotone increasing, for } y\geq 0. \end{array}$

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} = \frac{2(e^y - 1 - y)}{y^2}.$$

Facts:

$$\begin{array}{ll} g(0) = 1. \\ g(y) \leq 1, \mbox{ for } y < 0. \\ g(y) \mbox{ is monotone increasing, for } y \geq 0. \\ \hline \mbox{ For } y < 3, \mbox{ we have } \end{array}$$

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} \le \sum_{k=2}^{\infty} \frac{y^{k-2}}{3^{k-2}} = \frac{1}{1-y/3}.$$

Since $E(X_i | \mathcal{F}_{i-1}) = X_{i-1}$ and $X_i - X_{i-1} - a_i \leq M$, we have

 $\mathrm{E}(e^{t(X_i-X_{i-1}-a_i)}|\mathcal{F}_{i-1})$ = $E(\sum_{k=1}^{\infty} \frac{t^k}{k!} (X_i - X_{i-1} - a_i)^k | \mathcal{F}_{i-1})$ $= 1 - ta_i + E(\sum_{k=1}^{\infty} \frac{t^k}{k!} (X_i - X_{i-1} - a_i)^k | \mathcal{F}_{i-1})$ $\leq 1 - ta_i + \mathrm{E}(\frac{t^2}{2}(X_i - X_{i-1} - a_i)^2 g(tM) | \mathcal{F}_{i-1})$ $= 1 - ta_i + \frac{t^2}{2}g(tM)E((X_i - X_{i-1} - a_i)^2 | \mathcal{F}_{i-1})$

$$E(e^{t(X_{i}-X_{i-1}-a_{i})}|\mathcal{F}_{i-1})$$

$$\leq 1 - ta_{i} + \frac{t^{2}}{2}g(tM)E((X_{i} - X_{i-1} - a_{i})^{2}|\mathcal{F}_{i-1})$$

$$= 1 - ta_{i} + \frac{t^{2}}{2}g(tM)(E((X_{i} - X_{i-1})^{2}|\mathcal{F}_{i-1}) + a_{i}^{2})$$

$$\leq 1 - ta_{i} + \frac{t^{2}}{2}g(tM)(\sigma_{i}^{2} + a_{i}^{2})$$

$$\leq e^{-ta_{i} + \frac{t^{2}}{2}g(tM)(\sigma_{i}^{2} + a_{i}^{2})}.$$

$$\begin{split} & \mathcal{E}(e^{t(X_{i}-X_{i-1}-a_{i})}|\mathcal{F}_{i-1}) \\ & \leq 1 - ta_{i} + \frac{t^{2}}{2}g(tM)\mathcal{E}((X_{i}-X_{i-1}-a_{i})^{2}|\mathcal{F}_{i-1}) \\ & = 1 - ta_{i} + \frac{t^{2}}{2}g(tM)(\mathcal{E}((X_{i}-X_{i-1})^{2}|\mathcal{F}_{i-1}) + a_{i}^{2}) \\ & \leq 1 - ta_{i} + \frac{t^{2}}{2}g(tM)(\sigma_{i}^{2} + a_{i}^{2}) \\ & \leq e^{-ta_{i} + \frac{t^{2}}{2}g(tM)(\sigma_{i}^{2} + a_{i}^{2})}. \end{split}$$

Thus,
$$E(e^{tX_i}|\mathcal{F}_{i-1}) = E(e^{t(X_i - X_{i-1} - a_i)}|\mathcal{F}_{i-1})e^{tX_{i-1} + ta_i}$$

 $\leq e^{-ta_i + \frac{t^2}{2}g(tM)(\sigma_i^2 + a_i^2)}e^{tX_{i-1} + ta_i}$
 $= e^{\frac{t^2}{2}g(tM)(\sigma_i^2 + a_i^2)}e^{tX_{i-1}}.$

Inductively, we have

$$E(e^{tX}) = E(E(e^{tX_n} | \mathcal{F}_{n-1}))$$

$$\leq e^{\frac{t^2}{2}g(tM)(\sigma_n^2 + a_n^2)}E(e^{tX_{n-1}})$$

$$\leq \cdots$$

$$\leq \prod_{i=1}^n e^{\frac{t^2}{2}g(tM)(\sigma_i^2 + a_i^2)}E(e^{tX_0})$$

$$= e^{\frac{1}{2}t^2g(tM)\sum_{i=1}^n(\sigma_i^2 + a_i^2)}e^{tE(X)}$$

Then for t satisfying tM < 3, we have $Pr(X \ge E(X) + \lambda) = Pr(e^{tX} \ge e^{tE(X)+t\lambda})$ $\leq e^{-tE(X)-t\lambda}E(e^{tX})$ $\leq e^{-t\lambda}e^{\frac{1}{2}t^2g(tM)\sum_{i=1}^n(\sigma_i^2+a_i^2)}$ $= e^{-t\lambda+\frac{1}{2}t^2g(tM)\sum_{i=1}^n(\sigma_i^2+a_i^2)}$ $\leq e^{-t\lambda+\frac{1}{2}\frac{t^2}{1-tM/3}\sum_{i=1}^n(\sigma_i^2+a_i^2)}.$

We choose $t = \frac{\lambda}{\sum_{i=1}^{n} (\sigma_i^2 + a_i^2) + M\lambda/3}$. Clearly tM < 3 and $\Pr(X \ge \operatorname{E}(X) + \lambda) \le e^{-t\lambda + \frac{1}{2} \frac{t^2}{1 - tM/3} \sum_{i=1}^{n} (\sigma_i^2 + a_i^2)}$ $= e^{-\frac{\lambda^2}{2(\sum_{i=1}^{n} (\sigma_i^2 + a_i^2) + M\lambda/3)}}$.

Sub/super-martingales

For a filter \mathbf{F} :

$$\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F},$$

a sequence of random variables X_0, X_1, \ldots, X_n is called a supermartingale if X_i is \mathcal{F}_i -measurable then $E(X_i \mid \mathcal{F}_{i-1}) \leq X_{i-1}$, for $1 \leq i \leq n$.

Sub/super-martingales

For a filter \mathbf{F} :

$$\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F},$$

a sequence of random variables X_0, X_1, \ldots, X_n is called a supermartingale if X_i is \mathcal{F}_i -measurable then $E(X_i \mid \mathcal{F}_{i-1}) \leq X_{i-1}$, for $1 \leq i \leq n$.

A sequence of random variables X_0, X_1, \ldots, X_n is said to be a submartingale if X_i is \mathcal{F}_i -measurable and $E(X_i | \mathcal{F}_{i-1}) \ge X_{i-1}$, for $1 \le i \le n$.

Sub/super-martingales

For a filter \mathbf{F} :

$$\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F},$$

a sequence of random variables X_0, X_1, \ldots, X_n is called a supermartingale if X_i is \mathcal{F}_i -measurable then $E(X_i \mid \mathcal{F}_{i-1}) \leq X_{i-1}$, for $1 \leq i \leq n$.

A sequence of random variables X_0, X_1, \ldots, X_n is said to be a submartingale if X_i is \mathcal{F}_i -measurable and $E(X_i \mid \mathcal{F}_{i-1}) \ge X_{i-1}$, for $1 \le i \le n$.

Remark: In the reference [Chung-Lu 2006], the terminologies of Supermartingale and submartingale were swapped.

A submartingale inequality

Theorem 5: [Chung-Lu] Suppose a submartingale X, associated with a filter \mathbf{F} , satisfies, for $1 \le i \le n$,

$$\operatorname{Var}(X_i | \mathcal{F}_{i-1}) \le \sigma_i^2 + \phi_i X_{i-1}$$

and

$$E(X_i|\mathcal{F}_{i-1}) - X_i \le a_i + M,$$

where M, a_i 's, σ_i 's, and ϕ_i 's are non-negative constants. Then we have

$$\Pr(X_n \le X_0 - \lambda) \le e^{-\frac{\lambda^2}{2(\sum_{i=1}^n (\sigma_i^2 + a_i^2) + X_0(\sum_{i=1}^n \phi_i) + M\lambda/3)}},$$

for any
$$\lambda \leq 2X_0 + \frac{\sum_{i=1}^n (\sigma_i^2 + a_i^2)}{\sum_{i=1}^n \phi_i}$$
.

Topic Course on Probabilistic Methods (week 8)

A supermartingale inequality

Theorem 6: [Chung-Lu] Suppose that a supermartingale X, associated with a filter \mathbf{F} , satisfies

$$\operatorname{Var}(X_i | \mathcal{F}_{i-1}) \le \sigma_i^2 + \phi_i X_{i-1}$$

and

$$X_i - E(X_i | \mathcal{F}_{i-1}) \le a_i + M$$

for $1 \le i \le n$. Here σ_i , a_i , ϕ_i and M are non-negative constants. Then we have

$$\Pr(X_n \ge X_0 + \lambda) \le e^{-\frac{\lambda^2}{2(\sum_{i=1}^n (\sigma_i^2 + a_i^2) + (X_0 + \lambda)(\sum_{i=1}^n \phi_i) + M\lambda/3)}}$$

Proof: For a positive t (to be chosen later), we consider

$$E(e^{tX_{i}}|\mathcal{F}_{i-1}) = e^{tE(X_{i}|\mathcal{F}_{i-1})+ta_{i}}E(e^{t(X_{i}-E(X_{i}|\mathcal{F}_{i-1})-a_{i})}|\mathcal{F}_{i-1})$$

$$= e^{tE(X_{i}|\mathcal{F}_{i-1})+ta_{i}}\sum_{k=0}^{\infty}\frac{t^{k}}{k!}E((X_{i}-E(X_{i}|\mathcal{F}_{i-1})-a_{i})^{k}|\mathcal{F}_{i-1})$$

$$\leq e^{tE(X_{i}|\mathcal{F}_{i-1})+\sum_{k=2}^{\infty}\frac{t^{k}}{k!}E((X_{i}-E(X_{i}|\mathcal{F}_{i-1})-a_{i})^{k}|\mathcal{F}_{i-1})}$$

$$\leq e^{tE(X_{i}|\mathcal{F}_{i-1})+\frac{g(tM)}{2}t^{2}(\sigma_{i}^{2}+\phi_{i}X_{i-1}+a_{i}^{2})}.$$

We define
$$t_i \ge 0$$
 for $0 < i \le n$, satisfying
 $t_{i-1} = t_i + \frac{g(t_0 M)}{2} \phi_i t_i^2.$

$E(e^{t_i X_i} | \mathcal{F}_{i-1}) \leq e^{(t_i + \frac{g(t_i M)}{2} \phi_i t_i^2) X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}$ $\leq e^{(t_i + \frac{g(t_0 M)}{2} t_i^2 \phi_i) X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}$ $= e^{t_{i-1} X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}.$

$$E(e^{t_i X_i} | \mathcal{F}_{i-1}) \leq e^{(t_i + \frac{g(t_i M)}{2} \phi_i t_i^2) X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}$$

$$\leq e^{(t_i + \frac{g(t_0 M)}{2} t_i^2 \phi_i) X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}$$

$$= e^{t_{i-1} X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}.$$

Iterating this bound, we get

$$E(e^{t_n X_n}) \le E(e^{t_0 X_0}) e^{\sum_{i=1}^n \frac{t_i^2}{2}g(t_i M)(\sigma_i^2 + a_i^2)}.$$

$$E(e^{t_i X_i} | \mathcal{F}_{i-1}) \leq e^{(t_i + \frac{g(t_i M)}{2} \phi_i t_i^2) X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}$$

$$\leq e^{(t_i + \frac{g(t_0 M)}{2} t_i^2 \phi_i) X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}$$

$$= e^{t_{i-1} X_{i-1}} e^{\frac{t_i^2}{2} g(t_i M) (\sigma_i^2 + a_i^2)}.$$

Iterating this bound, we get

$$E(e^{t_n X_n}) \le E(e^{t_0 X_0}) e^{\sum_{i=1}^n \frac{t_i^2}{2} g(t_i M)(\sigma_i^2 + a_i^2)}.$$

By Markov's inequality, we have $\Pr(X_n \ge X_0 + \lambda) \le e^{-t_n(X_0 + \lambda)} E(e^{t_n X_n})$ $\le e^{-t_n(X_0 + \lambda) + t_0 X_0 + \frac{t_0^2}{2}g(t_0 M) \sum_{i=1}^n (\sigma_i^2 + a_i^2)}.$

 $t_{n} = t_{0} - \sum_{i=1}^{n} (t_{i-1} - t_{i})$ = $t_{0} - \sum_{i=1}^{n} \frac{g(t_{0}M)}{2} \phi_{i} t_{i}^{2}$ $\geq t_{0} - \frac{g(t_{0}M)}{2} t_{0}^{2} \sum_{i=1}^{n} \phi_{i}.$

$$\Pr(X_n \ge X_0 + \lambda)$$

$$\leq e^{-t_n(X_0 + \lambda) + t_0 X_0 + \frac{t_0^2}{2}g(t_0 M)\sum_{i=1}^n (\sigma_i^2 + a_i^2)}$$

$$\leq e^{-(t_0 - \frac{g(t_0 M)}{2}t_0^2\sum_{i=1}^n \phi_i)(X_0 + \lambda) + t_0 X_0 + \frac{t_0^2}{2}g(t_0 M)\sum_{i=1}^n (\sigma_i^2 + a_i^2)}$$

$$= e^{-t_0 \lambda + \frac{g(t_0 M)}{2}t_0^2(\sum_{i=1}^n (\sigma_i^2 + a_i^2) + (X_0 + \lambda)\sum_{i=1}^n \phi_i)}.$$

$$\Pr(X_n \ge X_0 + \lambda)$$

$$\le e^{-t_0\lambda + t_0^2(\sum_{i=1}^n (\sigma_i^2 + a_i^2) + (X_0 + \lambda)\sum_{i=1}^n \phi_i)\frac{1}{2(1 - t_0M/3)}}$$

$$= e^{-\frac{\lambda^2}{2(\sum_{i=1}^n (\sigma_i^2 + a_i^2) + (X_0 + \lambda)(\sum_{i=1}^n \phi_i) + M\lambda/3)}}.$$

The proof of the theorem is complete.

Reference

- C. McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics, edited by M. Habib, C. McDiarmid, J. Ramirez- Alfonsin, and B. Reed, pp. 195248, Algorithms and Combinatorics 16. Berlin: Springer, 1998.
- Chung and Lu, Concentration inequalities and martingale inequalities a survey, Internet Mathematics, 3 (2006), No. 1, 79-127.
- Chung and Lu, Complex Graphs and Networks, (2006) published by AMS, ISBN-10: 0-8218-3657-9, ISBN-13: 978-0-8218-3657-6.

