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- Introduction -

The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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Selected topics

Linearity of Expectation (2 weeks)
Alterations (1 week)

The second moment method (1 week)
The Local Lemma (1-2 weeks)
Correlation Inequalities (1 week)
_arge deviation inequalities (3 weeks)
Poisson Paradigm (1 week)

Random graphs (2 weeks)
Discrepancy (1 week)

Entropy (1 week)
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Subtopics

Large deviation inequality

m Martingale
m Azuma’'s inequality and applications

m Variations
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- Martingale -

A martingale is a sequence Xy, Xi,...,X,, of random
variables so that for 0 <7 < m,

B(Xi|Xi, ..., Xo) = X;.
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- Martingale -

A martingale is a sequence Xy, Xi,...,X,, of random
variables so that for 0 <7 < m,

B(Xi|Xi, ..., Xo) = X;.

Let Fyp C F; C --- C F,, be achain of o-algebras. For
0<i<m,let X; =E(X|F). Then Xy, Xq,...,X,, forms
a martingale. Typically, Xg = E(X) and X,,, = X.
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Martingale '

A martingale is a sequence Xy, Xi,...,X,, of random
variables so that for 0 <7 < m,

E(Xit1|Xi, ..., Xo) = Xi.

Let Fyp C F; C --- C F,, be achain of o-algebras. For
0<i<m,let X; =E(X|F). Then Xy, Xq,...,X,, forms
a martingale. Typically, Xg = E(X) and X,,, = X.

m Vertex-exposure Martingale.
m Edge-exposure Martingale.
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- Azuma’s inequality -

Theorem: Let E(X) = Xj,..., X,, = X be a martingale
with

Xi — X <1
for all 0 <7 <m. For any A > 0, Then

22

Pr(X —E(X) > \) <e 2m.
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- Azuma’s inequality

Theorem: Let E(X) = Xj,..., X,, = X be a martingale

with
X, — X1 <1

for all 0 <7 <m. For any A > 0, Then

22

Pr(X —E(X) > \) <e 2m.
Proof: Let Y, = X, — X, 1. We have
E(Y[ X1, Xi—2,..., Xo) = 0.

B(e™ | X, 1, X;_a, ..., Xo) < cosh(t) < /2.
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continue

< E H etYi | | et/ < emt'/2
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- Continue '

Pr(X — E(X) > \) = Pr(e!XEX) - )
< e—t)\E( et(X—E(X)))

S e—t)\—l—mt2/2 .
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- Continue

Pr(X — E(X) > \) = Pr(e!XEX) - )
< e—t)\E( et(X—E(X)))

—tA+mit? /2

IA

€

Choose t = A/m. We have

Pr(X —E(X) > \) < e .
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- Application -

m G = (V,F): asimple graph.
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- Application -

m G = (V,F): asimple graph.
m A k-coloring ¢: V — |k] is proper if for any edge uv

c(u) # c(v).
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Application -

m G = (V,F): asimple graph.

m A k-coloring ¢: V — |k] is proper if for any edge uv
c(u) # c(v).

m G is k-colorable if there exists a proper k-coloring of G.

m The chromatic number x(G) is the minimum integer k
such that there exists a proper k-coloring of G.
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Application -

m G = (V,F): asimple graph.

m A k-coloring ¢: V — |k] is proper if for any edge uv
c(u) # c(v).

m G is k-colorable if there exists a proper k-coloring of G.

m The chromatic number x(G) is the minimum integer k
such that there exists a proper k-coloring of G.

Theorem [Shamir-Spencer (1987)]: For G = G(n, p),
we have

Pr(|x(G) — E(x(@))] > AWn —1) < 2e™/2,
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- Proof '

Let X = x(G). Consider the vertex exposure martingale of
X: E(X)=Xy,...,X,,=X. Note that for 1 <7 <n

X — Xiq| <1
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- Proof '

Let X = x(G). Consider the vertex exposure martingale of
X: E(X)=Xy,...,X,,=X. Note that for 1 <7 <n

X — Xiq| <1
Apply Azumar's inequality, we get

Pr(|x(G) — E(x(@))] > AWn —1) < 2e™/2.
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- Vertex exposure martingale -

A graph function f is said to satisfy the vertex Lipshitz
condition if whenever H and H’ differ at only one vertex,

[f(H) = f(H')| < 1. Then

Pr (|f(G) — E(f(G)| > \Wn —1) < 272
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- Vertex exposure martingale -

A graph function f is said to satisfy the vertex Lipshitz
condition if whenever H and H’ differ at only one vertex,

[f(H) = f(H')| < 1. Then

Pr (|f(G) — E(f(G)| > \Wn —1) < 272

A graph function f is said to satisfy the edge Lipshitz
condition if whenever H and H’ differ at only one edge,

[f(H) = f(H')| < 1. Then

Pr (f(G) —E(f(@))] > A (Z)) < 2e N2
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- Tight concentration of \(G) '

For sparse G = Gi(n, p), there is a better concentration

result. Let p = n"“.

m Shamir-Spencer (1987): If & > 2 + ¢, then x(G) is
concentrated on at most five values.
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- Tight concentration of Y\ (G) '

For sparse G = Gi(n, p), there is a better concentration
87

result. Let p = n"“.

m Shamir-Spencer (1987): If & > 2 + ¢, then x(G) is
concentrated on at most five values.

m Luczak (1991): If & > 2 + ¢, then x(G) is
concentrated in at most two values.
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- Tight concentration of Y\ (G) '

For sparse G = Gi(n, p), there is a better concentration

result. Let p = n"“.

84

Shamir-Spencer (1987): If a > 2 + ¢, then x(G) is
concentrated on at most five values.

Luczak (1991): If & > 2 +¢, then x(G) is
concentrated in at most two values.

Alon-Krivelevich (1997): If a > £ + ¢, then x(G) is
concentrated in at most two values.
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- Tight concentration of Y\ (G) '

For sparse G = Gi(n, p), there is a better concentration

result. Let p = n"“.

m Shamir-Spencer (1987): If & > 2 + ¢, then x(G) is
concentrated on at most five values.

m Luczak (1991): If & > 2 + ¢, then x(G) is
concentrated in at most two values.

m Alon-Krivelevich (1997): If a > % + ¢, then x(G) is
concentrated in at most two values.

Here we will prove a weaker result.
Theorem: For o > % +eand p=n~2 let G = G(n,p).
-a 1 hen X(G) is concentrated on at most four values.
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- A Lemma '

Lemma: Let o, c be fixed, a > % +e. Let p=n"“ Then
almost always every c4/n vertices of G = G(n, p) may be
three-colored.
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A Lemma '

Lemma: Let o, c be fixed, a > % +e. Let p=n"“ Then
almost always every c4/n vertices of G = G(n, p) may be

three-co

Proof:
three-co

ored.

f not, let T' be the minimal set such that is not

orable. GG|7 has minimum degree at least 3. The

probability of existing such T with |T| < ¢y/n is at most

t=4

S (k=3 ) (5)

—ZCQn )V =o0(1).

urse on Probabilistic Methods (week 8) Linyuan Lu, University of South Carolina — 13 / 35



- Proof of Theorem -

Proof: Let ¢ > 0 be arbitrary small and let u = (n, p, €) be
the least integer so that

Pr(x(G) < u) > e
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- Proof of Theorem -

Proof: Let ¢ > 0 be arbitrary small and let u = (n, p, €) be
the least integer so that

Pr(x(G) < u) > e

Let Y to be the minimal size of a set of vertices S for which
G — S may be u-colored. Y satisfies the vertex Lipschitz

condition.
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Proof of Theorem

Proof: Let ¢ > 0 be arbitrary small and let u = (n, p, €) be
the least integer so that

Pr(x(G) < u) > e

Let Y to be the minimal size of a set of vertices S for which
G — S may be u-colored. Y satisfies the vertex Lipschitz

condition. Apply Azuma'’s inequality with
A=+/2(n—1)In(1/e) = O(y/n).
Pr(Y —E(Y) > \) <,
Pr(Y —E(Y) < =) <e.
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- Continue -

By definition of u, Pr(Y = 0) > ¢. Hence E(Y) < \.

Pr(Y > 2)\) < Pr(Y > E(Y) + \) <e.
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- Continue -

By definition of u, Pr(Y = 0) > ¢. Hence E(Y) < \.

Pr(Y > 2)\) < Pr(Y > E(Y) + \) <e.

With probability at least 1 — € there is a u-coloring of all but

at most O(4/n) vertices. By the Lemma, with probability at
least 1 — ¢, these points my be colored with three further
colors. Thus GG is u + 3-colorable. Putting together, we have

Pr(u < x(G) <u+3)>1— 3¢

where € is arbitrarily small.
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- Generalization '

m c:=(c,...,cp), Where ¢; > 0.
m A martingale E(X) = X, X1,..., X, = X is c-Lipschitz
if

X — Xio1| < ¢
fore =1,2,...,n.
Azuma’s inequality: |f a martingale X is c-Lipschitz, then

22

Pr(| X — E(X)| > \) < 2e *Tiaq.
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- Connection '

Let Y7,Y5,...,Y), be independent variables and
Y=Y Lt X; =E(Y)+ > :_(Y; — E(Y}))). Then
E(Y) = Xy, X1,...,X,, =Y forms a martingale.
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Connection

Let Y7,Y5,...,Y), be independent variables and
Y=Y Lt X; =E(Y)+ > :_(Y; — E(Y}))). Then
E(Y) = Xy, X1,...,X,, =Y forms a martingale.

m Inequalities on martingale can be applied to the sum of
independent random variables.
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Topic Course on Probabilistic Methods (week 8)



- Connection '

Let Y7,Y5,...,Y), be independent variables and
Y=Y Lt X; =E(Y)+ > :_(Y; — E(Y}))). Then
E(Y) = Xy, X1,...,X,, =Y forms a martingale.

m Inequalities on martingale can be applied to the sum of
independent random variables.

m One may expect to generalize Chernoff-type inequalities
to martingales.

Linyuan Lu, University of South Carolina — 17 / 35
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- Terminologies '

We say X is a martingale associated with a filter F if

m F .= {F, Fi,...,F.} is a set of g-algebras satisfying
{@,Q}:F()Cf1 C .- CJFy.

m X is a random variable and it is J,,-measurable.
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- Terminologies '

We say X is a martingale associated with a filter F if

m F .= {F, Fi,...,F.} is a set of g-algebras satisfying
{@,Q}:F()Cf1 C .- CJFy.

m X is a random variable and it is J,,-measurable.

For 1 < ) <n, let Xz — E(X’E) Then X(),Xl, co ,Xn
forms a martingale.
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- Terminologies '

We say X is a martingale associated with a filter F if

m F .= {F, Fi,...,F.} is a set of g-algebras satisfying
{@,Q}:F()Cf1 C .- CJFy.

m X is a random variable and it is J,,-measurable.

For 1 < ) <n, let Xz — E(X’E) Then X(),Xl, co ,Xn
forms a martingale.

If a martingale E(X,,) = Xy, X1,..., X, is given, then one
can define F; be the o-algebra generated by Xy, X1,...,X;.
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- Variation | -

Theorem 1 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(X;|Fi_1) < o7 for1 <i<mn;
2. ‘XZ—X2_1|§M,{:OI’1§ZSTL

Then, we have

22

Pr(X — E(X) > \) < e *Eioinns,
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- Variation || -

Theorem 2 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(X;|Fi_1) < o7 for1 <i<mn;
2. Xi—Xi_léMi, fOI’lSZSTL

Then, we have

22

Pr(X — E(X) > \) <e *ZiaCimd,
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- Variation || -

Theorem 3 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(X;|Fi_1) < o7 for1 <i<mn;
2. Xi—Xi_lgai—l—M,forlgign.

Then, we have

22

PI(X . E(X) > )\) < 6_2(2?:1(0,&.2—#&%2)—{—]\4)\/3).
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- Variation 1V -

Theorem 4 [Chung-Lu]: Let X be the martingale
associated with a filter F satisfying

1. Var(X;|Fi_1) < o7 for1 <i<mn;
2. Xi—Xi_léMi, fOI’lSZSTL
Then, for any M, we have

22

Pr(X — E(X) > \) < e 25 oimumn0n-dmans),
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- The function g(y) -

iy _2(e! —1—y)
k=2 k! y2
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The function g(y) -

iy _2(e! —1—y)
k=2 k! y2
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The function g(y)

| 2
=2 k Y

Facts:

m g(0) =1

m g(y) <1, fory<0
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The function g(y)

2(e? — 1 —y)

ooy 3
kz_:k—_ Yy?

= 1.
m g(y) <1, fory <DO.
IS monotone increasing, for y > 0.
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The function g(y) -

iy _2(e! —1—y)
k=2 k! y2

Facts:

-

9(0)

g(y) < 1 for y < 0.
g(y) is monotone increasing, for y > 0.
For y < 3, we have
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- Proof of Theorem 3 -

Since E(X2|JT'-2—1) — Xz'—l and Xz — Xz'—l
E(e (X —Xi_1— az) 'F-Z—l)
00 th
— E(Z E(Xz — X1 — az)k‘j—"i—l)
k=0
00 th
= 1—ta;+B()  —(Xi— X
k=2
t2
S 1 — tCLZ —|— E(a(X XZ_l
t2

—a; < M, we have
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- Continue '

E(et(Xi—Xi_l—ai) E_l)
t2
< 1 — tCLZ' + ag(tM)E((XZ — X@'—l — CLZ')2‘JT"Z'_1)

2

t

= 1 —ta; + ag(tM)(E((Xz — Xi—1)2’f‘i—1) T az2)
t? N

< 1—ta; + ag(tM)(Uz' +a;)

< e tatTg(tM)(oFta?),
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- Continue

E(et(Xi—Xi_l—ai) E_l)
t2
< 1 — tCLZ' + ag(tM)E((XZ — X@'—l — CLZ')2‘JT"Z'_1)

2

!
L~ ta; + 5 g(tM)(B((X; = Xi1)?| Fiy) + )
2

t
1 —ta; + 59(75]\4)(02-2 - a?)

AN

2
< ptait Sg(tM)(o?+a?)

Thus, E(e™ E(et(X"'_Xi—l_“i)

.Fi_l)etXi_l—I_tai

2
—ta;+5g(tM)(o7+a?) 6tXi_ 1+ta;

Fi-1)

AN

€

2
o T9(tM)(of+a7) X1
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- Continue

Inductively, we have

E(etX)

|
e
o
G
>
1
!

VA
Q)
N[
N
E
=)
I N
+
)
3O
™
—~
Q)
~
o<
T
N

VAN

VAN

T o TIUM) (o7 +a) ot X0
1=1

AP9(EM) ST (07 +a?) B (X)
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- Continue

Then for ¢ satistying tM < 3, we have
Pr(X > E(X)+ )) Pr(e!X > oBE)+A

< e—tE(X)—t)\E(etX)

< o tApat?g(tM) 31 (07 +af)

_ e_m%tz (M) 1L (o7-+a?)

< e_t)“L%#fQW?’ > i (o7 +ai)
We choose ¢t = ST 2 +A IETSVEE Clearly tM < 3 and

Pr(X >E(X)+)\) < oA 3 s i (07 +a3)

_ 22
— e 2(2?:1(%2—{-&%2)—1—]\4)\/3).
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- Sub /super-martingales -

For a filter F':
{@,Q}:F()CflC“'CFn:f,

a sequence of random variables Xy, X1,...,X,, is called a

supermartingale if X, is F;,-measurable then
E(XZ ‘ JT':L'_l) < X@'—ly for 1 < ) < n.
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- Sub /super-martingales -

For a filter F':
{@,Q}:F()CflC“'CFn:f,

a sequence of random variables Xy, X1,...,X,, is called a
supermartingale if X, is F;,-measurable then
E(XZ ‘ E—l) < Xi—lv for 1 < ) < n.

A sequence of random variables X, X1,...,.X,, Is said to be

a submartingale if X, is F;-measurable and
E(X@ ’ -Fi—l) Z X@'—L for 1 S 1 § 1.
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- Sub /super-martingales -

For a filter F':

a sequence of random variables Xy, X1,...,X,, is called a
supermartingale if X, is F;,-measurable then
E(XZ ‘ JT':L'_l) < Xz'—L for 1 < ) < n.

A sequence of random variables X, X1,...,.X,, Is said to be

a submartingale if X; is F;-measurable and
E(X@ ’ -/T'-fi—l) Z Xz'—l, for 1 S ) S 1.

Remark: In the reference [Chung-Lu 2006], the
terminologies of Supermartingale and submartingale were
g SWapped.
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- A submartingale inequality '

Theorem 5: [Chung-Lu] Suppose a submartingale X,
associated with a filter F, satisfies, for 1 <1 < n,

Var(X;|Fic1) < 07 + ¢ X4
and
E(X;|Fi1) — Xi < a; + M,

where M, a;'s, 0;'s, and ¢;'s are non-negative constants.
Then we have

_ A2
Pr(X, < Xy,—X) <e 2Ty (e +Xo(Tiy 60)+MA/3)

- fOr any A < 2.X; 4 Z%y?;@?)_
% =1 71
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- A supermartingale inequality -

Theorem 6: [Chung-Lu] Suppose that a supermartingale
X , associated with a filter F, satisfies

Var(X;|Fio1) < 07 + ¢ X4
and
X, — BE(X;|Fie1) <ai + M

for 1 < ¢ <n. Here 0, a;, »; and M are non-negative
constants. Then we have

_ A2
Pr(X, > Xo+ ) <e 2(X7 (07 +a)+(Xo+N) (S éi)+MA/3)
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- Proof of Theorem 6 -

Proof: For a positive t (to be chosen later), we consider

E(€ i—l)
— etE(Xi|Fi—1)+taz’E(et(Xi_E(Xi|Fi—1)_ai) E—l)
= PRIt - S B(XG = B(XG[Fi) — ai)'[Fi)

B (Xl Fica)+3 » S E(Xi—E(X,|Fim1)—a;) | Fim)

LE(X|Fio1)+ 2902 (024, X1 +a?)

VARRVAN

€

We define t; > 0 for 0 < 7 < n, satisfying
toM
ti—1 = 1; (O )Cbu
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continue

2
- 4 9EGM) 42 ot 2, 2
B Fiy) < elit™ o aitdXimgggtiM)(o? +a})
2
M t:
< e(ti+9(t% >tggbi)Xi_legg(tiM)(aeraf)
b1 X1 g(t M) (024+02)
— pli-1i-1 9 i T4)
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continue '

2
|Fiy) < et ™5 otdXin ghgtid)(of+a})

(toM)

26 X1 % g(t,M) (02 +a2)

(ti+* 1039

VAN

€

2
+4
€t¢—1X¢—1 G%Q(tz‘M)(U%JFa%) .

lterating this bound, we get
E(et%n) < B(ehX0)e D e 17@2 (t:iM)(of+a7)
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continue '

1Foy) < et 2o X ot (oo

2
L 2R 200) Xio £ (6 M) (07 +a?)

el

VAN

2
+4
€t¢—1X¢—1 G%Q(tz‘M)(U%JFCL%) .

lterating this bound, we get

2

E(eXn) < B(ehX0)eXizt 3otiM)(oi+ai),

By Markov's inequality, we have
PI’(Xn > XO -+ )\) < e_tn(Xo+)\)E(6tan)

2
< e—tn(Xo+>\)+toXo+t709(toM) 2?21(01'2—1_&@2).
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continue

n

tn = to— Y (tisg —t;)

1=1

" g(toM

|V

1=1
g(tOM) 9 &
to — =, toz_;@.
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continue

n

tn = to— Y (tisg —t;)

1=1

" g(toM

> fy—? tOM Zoz

Pr(X, > Xo -+ A)

2
—tn (Xo+N) +to Xo+Dg(toM) X7 (62 442)

2
6—(to—mt3 Doy ¢z')(Xo+>\)+toXo+%Og(toM) >or (0 +a?)

—t M—g(tOM)tO(ZZ (o2 +a?)+(Xo+A) D0, ¢z‘).

AN

€

I

€
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- Continue -

__ A
Now we choose fo = s ey a0, I (s, 0 03

the fact that tgM < 3, we have

Using

Pr(X, > Xo+ \)
e—to)ﬂ—t%(Z?’:l(Uf—l—a?)—i-(XOJr)\) D i1 i) 2(1—téM/3)

_ A2
— e 2(31 1 (024a2)+(Xo+ M) (2, bi)+MA/3)

VAN

The proof of the theorem is complete.
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