

Topic Course on Probabilistic Methods (Week 5) Lovász Local Lemma

Linyuan Lu

University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

The second moment method

- Lovász Local Lemma
- Property B
- k-coloring of $\mathbb R$
- Ramsey numbers R(k,k)
- Ramsey numbers R(3,k)
- Directed cycles
- Linear Arboricity

Lovász Local Lemma

• A_1, A_2, \ldots, A_n : *n* events in an arbitrary probability spaces.

Lovász Local Lemma

- A_1, A_2, \ldots, A_n : *n* events in an arbitrary probability spaces.
- A dependency digraph D = (V, E): if for each A_i , A_i is mutually independent to all the events $\{A_j : A_i A_j \notin E\}$.

Lovász Local Lemma, general case: If there are real number x_1, \ldots, x_n such that $0 \le x_i < 1$ and $\Pr(A_i) \le x_i \prod_{(i,j) \in E} (1-x_j)$ for all $1 \le i \le n$. Then

$$\Pr\left(\wedge_{i=1}^{n}\bar{A}_{i}\right) \geq \prod_{i=1}^{n}(1-x_{i}) > 0.$$

Proof: Inductively prove that for any $S \subset [n]$, |S| = s < n, $i \notin S$,

$$\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] \le x_i.$$

Trivial for s = 0. Assuming it for all s' < s, we prove it for s.

Proof: Inductively prove that for any $S \subset [n]$, |S| = s < n, $i \notin S$,

$$\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] \le x_i.$$

Trivial for s = 0. Assuming it for all s' < s, we prove it for s. Let $S_1 = \{j \in S : (i, j) \in E(G)\}$ and $S_2 = S \setminus S_1$. Then

Proof: Inductively prove that for any $S \subset [n]$, |S| = s < n, $i \notin S$,

$$\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] \le x_i.$$

Trivial for s = 0. Assuming it for all s' < s, we prove it for s. Let $S_1 = \{j \in S : (i, j) \in E(G)\}$ and $S_2 = S \setminus S_1$. Then $\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] = \frac{\Pr\left[A_i \wedge (\wedge_{j \in S_1} \bar{A}_j) \mid \wedge_{j \in S_2} \bar{A}_j\right]}{\Pr\left[\wedge_{j \in S_1} \bar{A}_j \mid \wedge_{j \in S_2} \bar{A}_j\right]}$

Proof: Inductively prove that for any $S \subset [n]$, |S| = s < n, $i \notin S$,

$$\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] \le x_i.$$

Trivial for s = 0. Assuming it for all s' < s, we prove it for s. Let $S_1 = \{j \in S : (i, j) \in E(G)\}$ and $S_2 = S \setminus S_1$. Then $\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] = \frac{\Pr\left[A_i \wedge \left(\wedge_{j \in S_1} \bar{A}_j\right) \mid \wedge_{j \in S_2} \bar{A}_j\right]}{\Pr\left[\wedge_{j \in S_1} \bar{A}_j \mid \wedge_{j \in S_2} \bar{A}_j\right]}$ $\Pr\left[A_i \wedge (\wedge_{i \in S_1} \bar{A}_i) \mid \wedge_{i \in S_2} \bar{A}_i\right] \leq \Pr\left[A_i \mid \wedge_{i \in S_2} \bar{A}_i\right]$ $= \Pr[A_i] \le x_i \quad | \quad (1 - x_j).$ $(i,j) \in E(G)$

Thus,

 $\Pr\left[A_i \mid \wedge_{j \in S} \bar{A}_j\right] \le x_i.$

$$\Pr\left[\wedge_{i=1}^{n}\bar{A}_{i}\right] = (1 - \Pr[A_{1}])(1 - \Pr[A_{2}|\bar{A}_{1}]) \cdots \\ \cdots \left(1 - \Pr\left[A_{n}|\wedge_{i=1}^{n-1}\bar{A}_{i}\right]\right) \\ \geq \prod_{i=1}^{n} (1 - x_{i}).$$

The proof is finished.

Symmetric Case

Property B

Theorem: Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$, then H has property B.

Property B

Theorem: Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$ then

H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$, then H has property B.

Proof: Color each vertex in two colors randomly and independently. For each edge $f \in E$, let A_f be the event that f is monochromatic. Then

$$\Pr(A_f) = 2^{1-|f|} \le 2^{1-k}.$$

 A_f is independent to all event but at most d. Aplly LLL.

$k\text{-coloring of }\mathbb{R}$

Let $c \colon \mathbb{R} \to \{1, 2, \dots, k\}$ be a k-coloring of \mathbb{R} . A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \dots, k\}$.

$k\text{-coloring of }\mathbb{R}$

Let $c \colon \mathbb{R} \to \{1, 2, \dots, k\}$ be a k-coloring of \mathbb{R} . A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \dots, k\}$.

Theorem: Let m and k be two positive intergers satisfying

$$e(m(m-1)+1)k(1-\frac{1}{k})^m \le 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translantion x + S (for $x \in \mathbb{R}$) is multicolored.

$k\text{-coloring of }\mathbb{R}$

Let $c \colon \mathbb{R} \to \{1, 2, \dots, k\}$ be a k-coloring of \mathbb{R} . A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \dots, k\}$.

Theorem: Let m and k be two positive intergers satisfying

$$e(m(m-1)+1)k(1-\frac{1}{k})^m \le 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translantion x + S (for $x \in \mathbb{R}$) is multicolored. The condition is satisfied if $m > (3 + o(1))k \log k$.

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that x + S (for all $x \in X$) is multi-colored."

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that x + S (for all $x \in X$) is multi-colored."

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that x + S is not multi-colored.

$$\Pr(A_x) \le k(1 - \frac{1}{k})^m.$$

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that x + S (for all $x \in X$) is multi-colored."

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that x + S is not multi-colored.

$$\Pr(A_x) \le k(1 - \frac{1}{k})^m$$

 A_x depends on A_y if $(x + S) \cap (y + S) \neq \emptyset$. Equivalently, $y - x \in S - S$. There are at most m(m - 1) such events.

$$d \le m(m-1).$$

Apllying LLL, we get

$$\Pr(\wedge_{x\in X}\bar{A}_x)>0.$$

Then by Tikhonov's theorem, $[k]^{\mathbb{R}}$ is compact. For any $x\in\mathbb{R},$ let

 $C_x = \{ c \in [k]^{\mathbb{R}} \colon x + S \text{ is multi-colored} \}.$

Apllying LLL, we get

$$\Pr(\wedge_{x\in X}\bar{A}_x)>0.$$

Then by Tikhonov's theorem, $[k]^{\mathbb{R}}$ is compact. For any $x\in\mathbb{R},$ let

$$C_x = \{ c \in [k]^{\mathbb{R}} \colon x + S \text{ is multi-colored} \}.$$

Now C_x is a closed set and $\bigcap_{x \in X} C_x \neq \emptyset$ for any finite X. Then $\bigcap_{x \in \mathbb{R}} C_x \neq \emptyset$.

Theorem (Spencer, 1975)

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}.$$

Theorem (Spencer, 1975)

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log^2 k}.$$

Theorem (Spencer, 1975)

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log^2 k}.$$

Best bounds for R(r,k) (for fixed r and k large),

$$c\left(\frac{k}{\log k}\right)^{(r+1)/2} < R(r,k) < (1+o(1))\frac{k^{r-1}}{\log^{r-2}k}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

For $S \in {\binom{[n]}{3}}$, let A_S be the event of $G|_S$ is a triangle; $\Pr(A_S) = p^3$.

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

- For $S \in {\binom{[n]}{3}}$, let A_S be the event of $G|_S$ is a triangle; $\Pr(A_S) = p^3$.
- For $T \in {\binom{[n]}{k}}$, let B_T be the event that T is an independent set of G; $\Pr(B_t) = (1-p)^{\binom{k}{2}}$.

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

- For $S \in {\binom{[n]}{3}}$, let A_S be the event of $G|_S$ is a triangle; $\Pr(A_S) = p^3$.
- For $T \in {\binom{[n]}{k}}$, let B_T be the event that T is an independent set of G; $\Pr(B_t) = (1-p)^{\binom{k}{2}}$.
- Dependence graph: $d_{SS} \leq 3n$, $d_{ST} \leq 3\binom{n}{k-2}$, $d_{TS} \leq \binom{k}{2}n$, and $d_{TT} \leq \binom{k}{2}\binom{n}{k-2}$.

By LLL, we only require

$$p^{3} \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}}$$
$$(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}.$$

By LLL, we only require

$$p^{3} \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}}$$
$$(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}.$$

We can choose $p = c_1 n^{-1/2}$, $k = c_2 n^{1/2} \log n$, $x = c_3 n^{-3/2}$, and $y = c_4 / \binom{n}{k}$.

By LLL, we only require

$$p^{3} \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}}$$
$$(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}.$$

We can choose $p = c_1 n^{-1/2}$, $k = c_2 n^{1/2} \log n$, $x = c_3 n^{-3/2}$, and $y = c_4 / \binom{n}{k}$.

This gives $R(3, k) > c_5 k^2 / \log^2 k$.

R(4,k)

Best bounds for R(r, k) (for fixed r and k large),

$$c\left(\frac{k}{\log k}\right)^{(r+1)/2} < R(r,k) < (1+o(1))\frac{k^{r-1}}{\log^{r-2}k}.$$

Erdős conjecture \$250: Prove

$$R(4,k) > c' \frac{k^3}{\log^c k}$$

for some constants c', c > 0.

R(4, k)

Best bounds for R(r, k) (for fixed r and k large),

$$c\left(\frac{k}{\log k}\right)^{(r+1)/2} < R(r,k) < (1+o(1))\frac{k^{r-1}}{\log^{r-2}k}.$$

Erdős conjecture \$250: Prove

$$R(4,k) > c' \frac{k^3}{\log^c k}$$

for some constants c', c > 0.

The best lower bound is using LLL; $R(4,k) > c' \frac{k^{2.5}}{\log^{2.5} k}$.

Directed cycles

- δ : minimum outdegree.
 - Δ : maximum indegree.

Directed cycles

- D = (V, E): a simple directed graph.
- δ : minimum outdegree.
 - Δ : maximum indegree.

Theorem [Alon and Linial (1989) If $e(\Delta\delta+1)(1-1/k)^{\delta} < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Directed cycles

- D = (V, E): a simple directed graph.
- δ : minimum outdegree.
 - Δ : maximum indegree.

Theorem [Alon and Linial (1989) If $e(\Delta\delta+1)(1-1/k)^{\delta} < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Proof: First we can assume every out-degree is δ by deleting some edges if necessary. Consider $f: V \to \mathbb{Z}_k$. Bad event A_v : no $u \in \Gamma^+(v)$ with f(u) = f(v) + 1.

$$\Pr(A_v) = (1 - 1/k)^{\delta}.$$

δ_{Δ} Each event depends on at most $\delta\Delta$ others. Apply LLL. \Box

Linear Arboricity

Linear Arboricity

Linear forest: disjoint union of paths.
Linear arboricity la(G): the minimum number of linear forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every *d*-regular graph *G*,

$$\operatorname{la}(G) = \lceil \frac{d+1}{2} \rceil.$$

Linear Arboricity

Linear forest: disjoint union of paths.
Linear arboricity la(G): the minimum number of linear forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every *d*-regular graph *G*,

$$\operatorname{la}(G) = \lceil \frac{d+1}{2} \rceil.$$

If the conjecture is true, then it is tight.

$$\operatorname{la}(G) \ge \frac{nd}{2(n-1)} > \frac{d}{2}.$$

Directed graphs

- G = (V, E): a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla(G): the minimum number of linear directed forests, whose union is E(G).

Directed graphs

- G = (V, E): a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla(G): the minimum number of linear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, dla(G) = d + 1.

Directed graphs

- G = (V, E): a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla(G): the minimum number of linear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, dla(G) = d + 1.

DLA conjecture for d implies LA conjecture for 2d.

A proposition

Proposition: Let H = (V, E) be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \ge 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i .

A proposition

Proposition: Let H = (V, E) be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \ge 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i .

Proof: WLOG, we assume

$$|V_1| = |V_2| = \cdots = |V_r| = \lceil 2ed \rceil = g.$$

Pick from each V_i a vertex randomly and independently. Let W be the random set of the vertices picked. For each edge f, let A_f be the event that both ends in W. The maximum degree in the dependence graph is at most 2gd - 1. We have $e \cdot 2gd \cdot \frac{1}{g^2} = \frac{2ed}{g} < 1$. Apply LLL.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let G = (U, F) be a *d*-regular digraph with directed girth $g \ge 8ed$. Then

dla(G) = d + 1.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let G = (U, F) be a *d*-regular digraph with directed girth $g \ge 8ed$. Then

dla(G) = d + 1.

Proof: Using Hall's matching theorem, we can partition F into d pairwise disjoint 1-regular spanning subgraphs F_1, \ldots, F_d of G.

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \ge 8ed$.

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \ge 8ed$.

Apply the proposition to the line-graph H of G. Note H is 4d-2-regular.

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \ge 8ed$.

Apply the proposition to the line-graph H of G. Note H is 4d-2-regular.

There exists an independent set M_1 of H. Now $M_1, F_1 \setminus M_1, \ldots, F_d \setminus M_1$ forms d + 1 linear directed forests.

General *d*-regular graphs

Theorem [Alon 1988] There is an absolute constant c > 0 such that for every d-regular directed graph G

 $dla(G) \le d + cd^{3/4} \log^{1/2} d.$

General *d*-regular graphs

Theorem [Alon 1988] There is an absolute constant c > 0 such that for every d-regular directed graph G

$$dla(G) \le d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant c > 0 such that for every d-regular graph G

dla(G)
$$\leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$

General *d*-regular graphs

Theorem [Alon 1988] There is an absolute constant c > 0 such that for every d-regular directed graph G

$$dla(G) \le d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant c > 0 such that for every d-regular graph G

dla(G)
$$\leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$

The error terms can be improved to $cd^{2/3}\log^{1/3} d$.

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f\colon V\to\mathbb{Z}_p.$$

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f\colon V\to\mathbb{Z}_p.$$

Define for $i \in \mathbb{Z}_p$,

$$E_i = \{ (u, v) \in E \colon f(v) = f(u) + i \}.$$

Let $G_i = (V, E_i)$ and

- Δ_i^+ : the maximum out-degree of G_i .
 - Δ_i^- : the maximum in-degree of G_i .
- Δ_i : the maximum of Δ_i^+ and Δ_i^- .

There exists a f satisfying

• All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i -regular directed graph without deceasing the girth.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i -regular directed graph without deceasing the girth.

dla(G)
$$\leq 2\Delta_0 + \sum_{i=1}^{p-1} (\Delta_i + 1) \leq d + d/p + p + C\sqrt{dp \log d}.$$

Now choose $p \sim d^{1/2}$.

