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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviations (1-2 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Linearity of Expectation (2)

■ Disjoint pairs
■ k-sets
■ Balancing vectors
■ Unbalancing lights
■ Brégman’s Theorem
■ Hamliton paths
■ Independence number
■ Turán Theorem
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■ F ⊂ 2[n].
■ d(F) := |{(F, F ′) : F, F ′ ∈ F , F ∩ F ′ = ∅}|.
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■ F ⊂ 2[n].
■ d(F) := |{(F, F ′) : F, F ′ ∈ F , F ∩ F ′ = ∅}|.

Daykin and Erdős conjectured if |F| = 2(1/2+δ)n then
d(F) = o(|F|2).

Theorem [Alon-Frankl, 1985]: If |F| = 2(1/2+δ)n, then

d(F) < |F|2−δ2/2.
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Let m := 2(1/2+δ)n. Suppose d(F) < m2−δ2/2.
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Let m := 2(1/2+δ)n. Suppose d(F) < m2−δ2/2.

Pick independently t members A1, A2, . . . , At of F with
repetitions at random.

Pr(| ∪t
i=1 Ai| ≤

n

2
)

≤
∑

|S|=n
2

Pr(∧t
i=1(Ai ⊂ S))

≤ 2n
(

2n/2

2(1/2+δ)n

)t

= 2n(1−δt).



continue
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Let v(B) = |{A ∈ F : B ∩ A = ∅}|. Then
∑

B

v(B) = 2d(F) ≥ 2m2−δ2/2.
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Let v(B) = |{A ∈ F : B ∩ A = ∅}|. Then
∑

B

v(B) = 2d(F) ≥ 2m2−δ2/2.

Let Y be a random variable whose value is the number of
members B ∈ F that is disjoint to all Ai 1 ≤ i ≤ t.
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Let v(B) = |{A ∈ F : B ∩ A = ∅}|. Then
∑

B

v(B) = 2d(F) ≥ 2m2−δ2/2.

Let Y be a random variable whose value is the number of
members B ∈ F that is disjoint to all Ai 1 ≤ i ≤ t. Then

E(|Y |) =
∑

B∈F

(

v(B)

m

)t

≥ 1

mt−1

(∑

B v(B)

m

)t

≥ 2m1−tδ2/2.
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Since Y ≤ m, we get

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2.
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Since Y ≤ m, we get

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2.

Choose t = ⌈1 + 1
δ⌉. We have m−tδ2/2 > 2n(1−δt).
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Since Y ≤ m, we get

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2.

Choose t = ⌈1 + 1
δ⌉. We have m−tδ2/2 > 2n(1−δt).

Thus, with positive probability, | ∪t
i=1 Ai| > n

2 and ∪t
i=1Ai is

disjoint to more than 2n/2 members of F . Contradiction. �



Linearity of expectation
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Let X1, X2, . . . , Xn be random variables and
X =

∑n
i=1 ciXi. Then

E(X) =
n
∑

i=1

ciE(Xi).
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Let X1, X2, . . . , Xn be random variables and
X =

∑n
i=1 ciXi. Then

E(X) =
n
∑

i=1

ciE(Xi).

Philosophy: There is a point in the probability space for
which X ≥ E(X) and a point for X ≤ E(X).
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Theorem: Let G = (V,E) be a graph with n vertices and
m edges. Then G contains a bipartite subgraph with at least
m/2 edges.
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Proof: Consider a random partition L ∪ R of V as follows.
For each vertex v, put v into L or R with equal probability.
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Let X be the number of crossing edges (from L to R). Let
Xuv be the indicator variable of the edge uv is crossing.

E(Xuv) =
1

2
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Theorem: Let G = (V,E) be a graph with n vertices and
m edges. Then G contains a bipartite subgraph with at least
m/2 edges.

Proof: Consider a random partition L ∪ R of V as follows.
For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let
Xuv be the indicator variable of the edge uv is crossing.

E(Xuv) =
1

2
.

E(X) =
∑

uv∈E
E(Xuv) =

m

2
.
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■ V = V1 ∪ V2 ∪ · · · ∪ Vk: a partition of equal parts, where
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■ V = V1 ∪ V2 ∪ · · · ∪ Vk: a partition of equal parts, where
|V1| = · · · = |Vk| = n.

■ h : V k → {−1, 1}.
■ For S ⊂ V , let h(S) =

∑

F⊂S h(F ).

■ A k-set F is crossing if it contains precisely one point
form each Vi.

Theorem: Suppose h(F ) = +1 for all crossing k-sets F .
Then there is an S ⊂ V for which

|h(S)| ≥ ckn
k.

Here ck > 0.



A Lemma
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Lemma: Let Pk be the set of all homogeneous polynomials

f(p1, . . . , pk) of degree k with all coefficients have absolute

value at most one and p1p2 · · · pk having coefficient one.

Then for all f ∈ Pk there exists p1, . . . , pk ∈ [0, 1] with

|f(p1, . . . , pk)| ≥ ck.

Here ck > 0, independent of n.
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Lemma: Let Pk be the set of all homogeneous polynomials

f(p1, . . . , pk) of degree k with all coefficients have absolute

value at most one and p1p2 · · · pk having coefficient one.

Then for all f ∈ Pk there exists p1, . . . , pk ∈ [0, 1] with

|f(p1, . . . , pk)| ≥ ck.

Here ck > 0, independent of n.

Proof: Let M(f) = maxp1,...,pk |f(p1, . . . , pk)|. Note Pk is
compact and M is continuous. M reaches its minimum
value ck at some point f0. We have

ck = M(f0) > 0. �
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Let S be a random set of V by setting

Pr(x ∈ S) = pi, x ∈ Vi.
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Let S be a random set of V by setting

Pr(x ∈ S) = pi, x ∈ Vi.
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XF =

{

h(F ) if F ⊂ S,
0 otherwise.

Say F has type (a1, . . . , ak) if |F ∩ Vi| = ai, 1 ≤ i ≤ k.
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Let S be a random set of V by setting

Pr(x ∈ S) = pi, x ∈ Vi.

Let

XF =

{

h(F ) if F ⊂ S,
0 otherwise.

Say F has type (a1, . . . , ak) if |F ∩ Vi| = ai, 1 ≤ i ≤ k. For

these F ,
E(XF ) = h(F )pa11 · · · pakk .



continue
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E(X) =
∑

∑k
i=1 ai=k

pa11 · · · pakk
∑

F of type (a1,...,ak)

h(F ).
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E(X) =
∑

∑k
i=1 ai=k

pa11 · · · pakk
∑

F of type (a1,...,ak)

h(F ).

Let f(p1, . . . , pk) =
1
nkE(X). Then f ∈ Pk.
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E(X) =
∑

∑k
i=1 ai=k

pa11 · · · pakk
∑

F of type (a1,...,ak)

h(F ).

Let f(p1, . . . , pk) =
1
nkE(X). Then f ∈ Pk.

Now select p1, . . . , pk ∈ [0, 1] with |f(p1, . . . , pk)| ≥ ck.
Then E(|X|) ≥ |E(X)| ≥ ckn

k.
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E(X) =
∑

∑k
i=1 ai=k

pa11 · · · pakk
∑

F of type (a1,...,ak)

h(F ).

Let f(p1, . . . , pk) =
1
nkE(X). Then f ∈ Pk.

Now select p1, . . . , pk ∈ [0, 1] with |f(p1, . . . , pk)| ≥ ck.
Then E(|X|) ≥ |E(X)| ≥ ckn

k.

There exists a S such that |h(S)| ≥ ckn
k. �



Balancing vectors
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Theorem: Let v1, . . . , vn are n unit vector in R
n. Then

there exist ǫ1, . . . , ǫn = ±1 so that

‖ǫ1v1 + · · · + ǫnvn‖ ≤ √
n,

and also there exist ǫ1, . . . , ǫn = ±1 so that

‖ǫ1v1 + · · · + ǫnvn‖ ≥ √
n.
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Let ǫ1, . . . , ǫn be selected uniformly and independently from
{+1,−1}. Let X = ‖ǫ1v1 + · · ·+ ǫnvn‖2.
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Let ǫ1, . . . , ǫn be selected uniformly and independently from
{+1,−1}. Let X = ‖ǫ1v1 + · · ·+ ǫnvn‖2.

E(X) = E(
n
∑

i,j=1

ǫiǫjvi · vj)

=
n
∑

i,j=1

E(ǫiǫj)vi · vj

=
n
∑

i,j=1

δji vi · vj

=
n
∑

i=1

‖vi‖2 = n.
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Theorem: Let v1, . . . , vn ∈ R
n, all ‖vi‖ ≤ 1. Let

p1, p2, . . . , pn ∈ [0, 1] be arbitrary and set
w = p1v1 + p2v2 + · · ·+ pnvn. Then there exist
ǫ1, . . . , ǫn ∈ {0, 1} so that setting v = ǫ1v1 + · · ·+ ǫnvn,

‖w − v‖ ≤
√
n

2
.
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Theorem: Let v1, . . . , vn ∈ R
n, all ‖vi‖ ≤ 1. Let

p1, p2, . . . , pn ∈ [0, 1] be arbitrary and set
w = p1v1 + p2v2 + · · ·+ pnvn. Then there exist
ǫ1, . . . , ǫn ∈ {0, 1} so that setting v = ǫ1v1 + · · ·+ ǫnvn,

‖w − v‖ ≤
√
n

2
.

Hint: Pick ǫi independently with

Pr(ǫi = 1) = pi, Pr(ǫi = 0) = 1− pi.

The proof is similar.



Unbalancing lights
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Theorem: Let aij = ±1 for 1 ≤ i, j ≤ n. Then there exist
xi, yj = ±1, 1 ≤ i, j ≤ n so that

n
∑

i,j=1

aijxiyj ≥
(

√

2

π
+ o(1)

)

n3/2.
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Theorem: Let aij = ±1 for 1 ≤ i, j ≤ n. Then there exist
xi, yj = ±1, 1 ≤ i, j ≤ n so that

n
∑

i,j=1

aijxiyj ≥
(

√

2

π
+ o(1)

)

n3/2.

Proof: Choose yj = 1 or −1 randomly and independently.
Let Ri =

∑n
i=1 aijyj. Let xi be the sign of Ri. Then

n
∑

i,j=1

aijxiyj =
n
∑

i=1

|Ri|.



continue
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Each Ri has the distribution Sn =
∑n

i=1Xi, where Xi’s are
independent uniform {−1, 1} random variables.



continue

Topic Course on Probabilistic Methods (week 2) Linyuan Lu, University of South Carolina – 19 / 33

Each Ri has the distribution Sn =
∑n

i=1Xi, where Xi’s are
independent uniform {−1, 1} random variables. We have

E(|Sn|) = n21−n

(

n− 1

⌊n−1
2 ⌋

)

=

(

√

2

π
+ o(1)

)

n1/2.
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Each Ri has the distribution Sn =
∑n

i=1Xi, where Xi’s are
independent uniform {−1, 1} random variables. We have

E(|Sn|) = n21−n

(

n− 1

⌊n−1
2 ⌋

)

=

(

√

2

π
+ o(1)

)

n1/2.

Hence,
n
∑

i=1

E(|Ri|) =
(

√

2

π
+ o(1)

)

n3/2.
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■ A = (aij): an n× n matrix with all ai,j ∈ {0, 1}.
■ S: the set of permutations σ ∈ Sn, with ai,σ(i) = 1 for all

i.

■ per(A) = |S|: the permanent of A.

■ ri: the i-th row sum.

Brégman’s Theorem (1973): per(A) ≤∏1≤i≤n(ri!)
1/ri.
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Pick σ ∈ Sn and τ ∈ Sn independently and uniformly.

■ Let A(1) := A; and A(i) is the submatrix obtained by
deleting row τ (i− 1) and column σ(τ (i− 1)) for
2 ≤ i ≤ n.

■ Rτ (i): the τ (i)’s row sum of A(i).

■ L = L(σ, τ ) :=
∏n

i=1Rτ (i).

■ G(L) := eE(lnL) = e
∑n

i=1 E(lnRτ(i)).
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Pick σ ∈ Sn and τ ∈ Sn independently and uniformly.

■ Let A(1) := A; and A(i) is the submatrix obtained by
deleting row τ (i− 1) and column σ(τ (i− 1)) for
2 ≤ i ≤ n.

■ Rτ (i): the τ (i)’s row sum of A(i).

■ L = L(σ, τ ) :=
∏n

i=1Rτ (i).

■ G(L) := eE(lnL) = e
∑n

i=1 E(lnRτ(i)).

Claim: per(A)) ≤ G(L).



continue
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For any fixed τ . Assume τ (1) = 1. By re-ordering, assume
the first row has ones in the first r := r1 columns. For
1 ≤ j ≤ r let tj be the permanent of A with the first row
and j-th column removed (i.e., σ(1) = j). Let

t =
t1 + · · · + tr

r
=

per(A)

r
.
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For any fixed τ . Assume τ (1) = 1. By re-ordering, assume
the first row has ones in the first r := r1 columns. For
1 ≤ j ≤ r let tj be the permanent of A with the first row
and j-th column removed (i.e., σ(1) = j). Let

t =
t1 + · · · + tr

r
=

per(A)

r
.

By induction,

G(R2 · · ·Rn|σ(1) = j) ≥ tj.

G(L) ≥
r
∏

j=1

(rtj)
tj/per(A) = r

r
∏

j=1

(tj)
tj/rt.



continue
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Since
(

∏r
j=1 t

tj
j

)
1
r ≥ tt, we have

G(L) ≥ r

r
∏

j=1

t
tj/rt
j ≥ r(tt)1/t = rt = per(A).
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Since
(

∏r
j=1 t

tj
j

)
1
r ≥ tt, we have

G(L) ≥ r

r
∏

j=1

t
tj/rt
j ≥ r(tt)1/t = rt = per(A).

Now we calculate G[L] conditional on a fixed σ. By

reordering, assume σ(i) = i for all i. Note

G(Ri) = (ri!)
1/ri.
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Since
(

∏r
j=1 t

tj
j

)
1
r ≥ tt, we have

G(L) ≥ r

r
∏

j=1

t
tj/rt
j ≥ r(tt)1/t = rt = per(A).

Now we calculate G[L] conditional on a fixed σ. By

reordering, assume σ(i) = i for all i. Note

G(Ri) = (ri!)
1/ri.

G(R) = G(
n
∏

i=1

Ri) =
n
∏

i=1

(ri!)
1/ri.
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Theorem: There is a tournament T with n players and at
least n!2−(n−1) Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a
random tournament. Write X =

∑

σ∈Sn
Xσ. Here Xσ is the

indicator random variable for σ giving a Hamilton path.

E(Xσ) = 2−(n−1).

We have

E(X) =
∑

σ∈Sn

E(Xσ) = n!21−n.

Done! �
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Let P (n) be the maximum possible number of Hamiltonian
paths in a tournament on n vertices.

Szele [1943] proved

1

2
≤ lim

n→∞

(

P (n)

n!

)1/n

≤ 1

23/4
.

He conjecture that limn→∞
(

P (n)
n!

)1/n

= 1
2 .

This conjecture was proved by Alon in 1990.

Theorem [Alon, 1990]: P (n) ≤ cn3/2 n!
2n−1 .
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■ C(T ): the number of directed Hamiltonian cycles of T .

■ F (T ): the number of spanning graph (of T ), whose
indegree and outdegree are both 1 at each vertex.

■ AT = (aij): the adjacency matrix of T , where aij = 1 if
i → j and 0 otherwise.

F (T ) = per(AT ) ≤
n
∏

i=1

(ri!)
1/ri.

Here ri is i-th row sum of AT ;
∑n

i=1 ri =
(

n
2

)

.
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b ≥ a+ 2 > a ≥ 1, we have

(a!)1/a(b!)1/b < ((a+ 1)!)1/(a+1)((b− 1)!)1/(b−1).

Proof: Let f(x) = (x!)1/x

((x+1)!)1/(1+x) . We need to show
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Lemma: For every two integers a, b satisfying
b ≥ a+ 2 > a ≥ 1, we have

(a!)1/a(b!)1/b < ((a+ 1)!)1/(a+1)((b− 1)!)1/(b−1).

Proof: Let f(x) = (x!)1/x

((x+1)!)1/(1+x) . We need to show

f(a) < f(b− 1). It suffices to show f(x− 1) < f(x).

((x− 1)!)1/(x−1)((x+ 1)!)1/(1+x) < (x!)2/x.

Simplifying it, we get
(

xx

x!

)2
>
(

1 + 1
x

)x(x−1)
.

It can be proved using x! > (x+1
2 )x for x ≥ 2. �
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Observe that
∏n

i=1(ri!)
1/ri achieves the maximum when all

ri’s are almost equal. We get

F (T ) ≤ (1 + o(1))

√
π√
2e

n3/2 (n− 1)!

2n
.
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Observe that
∏n

i=1(ri!)
1/ri achieves the maximum when all

ri’s are almost equal. We get

F (T ) ≤ (1 + o(1))

√
π√
2e

n3/2 (n− 1)!

2n
.

Construct a new tournament T ′ for T by adding a new vertex
v, where the edges from v to T are oriented randomly and
independently. Every Hamiltonian path in T can be extended
to a Hamiltonian cycle in T ′ with probability 1

4 . We have

P (T ) ≤ 1

4
C(T ′) = O

(

n3/2 n!

2n−1

)

. �
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α(G): the maximal size of an independent set of a graph G.

Theorem [Caro (1979), Wei(1981)] α(G) ≥∑v∈V
1

dv+1 .

Proof: Pick a random permutation σ on V . Define

I = {v ∈ V : vw ∈ E ⇒ σ(v) < σ(w)}.

Then I is an independent set.
Let Xv be the indicator random variable for v ∈ I.

E(Xv) = Pr(v ∈ I) =
1

dv + 1
.

α(G) ≥ E(|I|) =
∑

v

1

dv + 1
.
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Turán number t(n,H): the maximum integer m such that
there is a graph on n vertices containing no subgraph H.

Turán Theorem: For n = km+ r (0 ≤ r < k),

t(n,Kk+1) = m2

(

k

2

)

+ rm(k − 1) +

(

r

2

)

.

The equality holds if and only if G is the complete k-partite
graph with equitable partitions, denoted by Gn,k.
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For any k ≤ n, let q, r satisfy n = kq + r, 0 ≤ r < k. Let
e = r

(

q+1
2

)

+ (m− r)
(

q
2

)

.

Dual version of Turán Theorem: If G has n vertices and
e edges. Then α(G) ≥ k and the equality holds if and only if
G = Ḡn,k.

Proof: By Caro-Wei’s theorem, α(G) ≥∑v
1

dv+1 .

The minimum of
∑

v
1

dv+1 is reached as the dv as close
together as possible. Since each clique contributes one, we
have

∑

v

1

dv + 1
≥ k.

When the equality holds, I is a constant. G can not contain
an induced P2. Therefore G = Ḡn,k.
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■ Kővári-Sós-Turán (1954): For 2 ≤ r ≤ s,
t(n,Kr,s) < cs1/rn2−1/r + O(n).



History

Topic Course on Probabilistic Methods (week 2) Linyuan Lu, University of South Carolina – 32 / 33

■ Mantel (1907): t(n,K3) = ⌊n2⌋⌈n2⌉.
■ Turán (1941):

t(n,Kk) = |E(Gn,k−1)| = (1− 1
k−1 + o(1))

(

n
2

)

.

■ Erdős-Simonovits-Stone (1966): If χ(H) > 2, then
t(n,H) = (1− 1

χ(H)−1 + o(1))
(

n
2

)

.

■ Kővári-Sós-Turán (1954): For 2 ≤ r ≤ s,
t(n,Kr,s) < cs1/rn2−1/r + O(n).

■ Erdős-Bondy-Simonovits (1963,1974):
t(n,C2k) ≤ ckn1+1/k.
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■ Conjecture: for r ≥ 4, t(n,Kr,r) > cn2−1/r.

■ Conjecture ($100): If H is a bipartite graph such that
every induced subgraph has a vertex of degree ≤ r, then
t(n,H) = O(n2−1/r).

■ Conjecture: t(n,C2k) ≥ cn1+1/k for k = 4 and k ≥ 6.

■ Conjecture ($250 for proof and $100 for disproof:)
Suppose H is a bipartite graph. Prove or disprove that
t(n,H) = O(n3/2) if and only if H does not contain a
subgraph each vertex of which has degree > 2.
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