

Linyuan Lu

University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Linearity of Expectation (2)

- Disjoint pairs
- *k*-sets
- Balancing vectors
- Unbalancing lights
- Brégman's Theorem
- Hamliton paths
- Independence number
- Turán Theorem

Disjoint pairs

 $\mathcal{F} \subset 2^{[n]}.$ $\mathbf{d}(\mathcal{F}) := |\{(F, F') \colon F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|.$

Disjoint pairs

$$\mathcal{F} \subset 2^{[n]}.$$
$$d(\mathcal{F}) := |\{(F, F') \colon F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|.$$

Daykin and Erdős conjectured if $|\mathcal{F}| = 2^{(1/2+\delta)n}$ then $d(\mathcal{F}) = o(|\mathcal{F}|^2)$.

Disjoint pairs

$$\mathcal{F} \subset 2^{[n]}.$$
$$d(\mathcal{F}) := |\{(F, F') \colon F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|.$$

Daykin and Erdős conjectured if $|\mathcal{F}| = 2^{(1/2+\delta)n}$ then $d(\mathcal{F}) = o(|\mathcal{F}|^2)$.

Theorem [Alon-Frankl, 1985]: If $|\mathcal{F}| = 2^{(1/2+\delta)n}$, then

 $d(\mathcal{F}) < |\mathcal{F}|^{2-\delta^2/2}.$

Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$.

Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$.

Pick independently t members A_1, A_2, \ldots, A_t of \mathcal{F} with repetitions at random.

Proof

Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$. Pick independently t members A_1, A_2, \ldots, A_t of \mathcal{F} with repetitions at random.

$$\Pr(|\cup_{i=1}^{t} A_i| \le \frac{n}{2})$$

$$\le \sum_{|S|=\frac{n}{2}} \Pr(\wedge_{i=1}^{t} (A_i \subset S))$$

$$\le 2^n \left(\frac{2^{n/2}}{2^{(1/2+\delta)n}}\right)^t$$

$$= 2^{n(1-\delta t)}.$$

Let $v(B) = |\{A \in \mathcal{F} \colon B \cap A = \emptyset\}|$. Then

$$\sum_{B} v(B) = 2d(\mathcal{F}) \ge 2m^{2-\delta^2/2}.$$

Let $v(B) = |\{A \in \mathcal{F} \colon B \cap A = \emptyset\}|$. Then

$$\sum_{B} v(B) = 2d(\mathcal{F}) \ge 2m^{2-\delta^2/2}.$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all A_i $1 \le i \le t$.

Let $v(B) = |\{A \in \mathcal{F} \colon B \cap A = \emptyset\}|$. Then

$$\sum_{B} v(B) = 2d(\mathcal{F}) \ge 2m^{2-\delta^2/2}.$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all A_i $1 \le i \le t$. Then

$$E(|Y|) = \sum_{B \in \mathcal{F}} \left(\frac{v(B)}{m}\right)^t$$

$$\geq \frac{1}{m^{t-1}} \left(\frac{\sum_B v(B)}{m}\right)^t$$

$$\geq 2m^{1-t\delta^2/2}.$$

Since $Y \leq m$, we get

$$\Pr(Y \ge m^{1-t\delta^2/2}) \ge m^{-t\delta^2/2}.$$

Since $Y \leq m$, we get

$$\Pr(Y \ge m^{1-t\delta^2/2}) \ge m^{-t\delta^2/2}.$$

Choose $t = \lfloor 1 + \frac{1}{\delta} \rfloor$. We have $m^{-t\delta^2/2} > 2^{n(1-\delta t)}$.

Since $Y \leq m$, we get

$$\Pr(Y \ge m^{1-t\delta^2/2}) \ge m^{-t\delta^2/2}.$$

Choose $t = \lfloor 1 + \frac{1}{\delta} \rfloor$. We have $m^{-t\delta^2/2} > 2^{n(1-\delta t)}$.

Thus, with positive probability, $|\bigcup_{i=1}^{t} A_i| > \frac{n}{2}$ and $\bigcup_{i=1}^{t} A_i$ is disjoint to more than $2^{n/2}$ members of \mathcal{F} . Contradiction. \Box

Linearity of expectation

Let X_1, X_2, \ldots, X_n be random variables and $X = \sum_{i=1}^n c_i X_i$. Then

$$\mathbf{E}(X) = \sum_{i=1}^{n} c_i \mathbf{E}(X_i).$$

Linearity of expectation

Let X_1, X_2, \ldots, X_n be random variables and $X = \sum_{i=1}^n c_i X_i$. Then

$$\mathbf{E}(X) = \sum_{i=1}^{n} c_i \mathbf{E}(X_i).$$

Philosophy: There is a point in the probability space for which $X \ge E(X)$ and a point for $X \le E(X)$.

Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least m/2 edges.

Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least m/2 edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least m/2 edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let X_{uv} be the indicator variable of the edge uv is crossing.

$$\mathcal{E}(X_{uv}) = \frac{1}{2}.$$

Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least m/2 edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let X_{uv} be the indicator variable of the edge uv is crossing.

$$E(X_{uv}) = \frac{1}{2}.$$
$$E(X) = \sum_{uv \in E} E(X_{uv}) = \frac{m}{2}.$$

• $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$.

 $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$.
 $h: V^k \to \{-1, 1\}.$

k-sets

- $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$. ■ $h: V^k \to \{-1, 1\}$.
 - For $S \subset V$, let $h(S) = \sum_{F \subset S} h(F)$.

k-sets

- $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$.
- $\bullet \quad h \colon V^k \to \{-1, 1\}.$
 - For $S \subset V$, let $h(S) = \sum_{F \subset S} h(F)$.
 - A k-set F is crossing if it contains precisely one point form each V_i .

k-sets

- $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$.
- $\bullet \quad h \colon V^k \to \{-1, 1\}.$
 - For $S \subset V$, let $h(S) = \sum_{F \subset S} h(F)$.

• A k-set F is crossing if it contains precisely one point form each V_i .

Theorem: Suppose h(F) = +1 for all crossing k-sets F. Then there is an $S \subset V$ for which

$$|h(S)| \ge c_k n^k.$$

A Lemma

Lemma: Let P_k be the set of all homogeneous polynomials $f(p_1, \ldots, p_k)$ of degree k with all coefficients have absolute value at most one and $p_1p_2 \cdots p_k$ having coefficient one. Then for all $f \in P_k$ there exists $p_1, \ldots, p_k \in [0, 1]$ with

$$|f(p_1,\ldots,p_k)| \ge c_k.$$

Here $c_k > 0$, independent of n.

A Lemma

Lemma: Let P_k be the set of all homogeneous polynomials $f(p_1, \ldots, p_k)$ of degree k with all coefficients have absolute value at most one and $p_1p_2 \cdots p_k$ having coefficient one. Then for all $f \in P_k$ there exists $p_1, \ldots, p_k \in [0, 1]$ with

$$|f(p_1,\ldots,p_k)| \ge c_k.$$

Here $c_k > 0$, independent of n.

Proof: Let $M(f) = \max_{p_1,\dots,p_k} |f(p_1,\dots,p_k)|$. Note P_k is compact and M is continuous. M reaches its minimum value c_k at some point f_0 . We have

$$c_k = M(f_0) > 0.$$

Let S be a random set of V by setting

$$\Pr(x \in S) = p_i, \quad x \in V_i.$$

Let S be a random set of V by setting

$$\Pr(x \in S) = p_i, \quad x \in V_i.$$

Let

$$X_F = \begin{cases} h(F) & \text{if } F \subset S, \\ 0 & \text{otherwise.} \end{cases}$$

Let ${\cal S}$ be a random set of ${\cal V}$ by setting

$$\Pr(x \in S) = p_i, \quad x \in V_i.$$

Let

$$X_F = \begin{cases} h(F) & \text{if } F \subset S, \\ 0 & \text{otherwise.} \end{cases}$$

Say F has type (a_1, \ldots, a_k) if $|F \cap V_i| = a_i, \ 1 \leq i \leq j$

Topic Course on Probabilistic Methods (week 2)

k.

Let S be a random set of V by setting

$$\Pr(x \in S) = p_i, \quad x \in V_i.$$

Let

$$X_F = \begin{cases} h(F) & \text{if } F \subset S, \\ 0 & \text{otherwise.} \end{cases}$$

Say F has type (a_1, \dots, a_k) if $|F \cap V_i| = a_i, 1 \le i \le k$. For these F ,
$$E(X_F) = h(F)p_1^{a_1} \cdots p_k^{a_k}.$$

$\mathbf{E}(X) = \sum_{\substack{k\\\sum_{i=1}^{k} a_i = k}} p_1^{a_1} \cdots p_k^{a_k} \sum_{\substack{F \text{ of type } (a_1, \dots, a_k)}} h(F).$

continue

continue

$$E(X) = \sum_{\substack{\sum_{i=1}^{k} a_i = k}} p_1^{a_1} \cdots p_k^{a_k} \sum_{\substack{F \text{ of type } (a_1, \dots, a_k)}} h(F).$$

Let $f(p_1, \dots, p_k) = \frac{1}{n^k} E(X)$. Then $f \in P_k$.
Now select $p_1, \dots, p_k \in [0, 1]$ with $|f(p_1, \dots, p_k)| \ge c_k$.

Then $E(|X|) \ge |E(X)| \ge c_k n^k$.

$$E(X) = \sum_{\substack{\sum_{i=1}^{k} a_i = k}} p_1^{a_1} \cdots p_k^{a_k} \sum_{F \text{ of type } (a_1, \dots, a_k)} h(F).$$

Let $f(p_1, \dots, p_k) = \frac{1}{n^k} E(X)$. Then $f \in P_k$.
Now select $p_1, \dots, p_k \in [0, 1]$ with $|f(p_1, \dots, p_k)| \ge c_k$.
Then $E(|X|) \ge |E(X)| \ge c_k n^k$.
There exists a S such that $|h(S)| \ge c_k n^k$.

Balancing vectors

Theorem: Let v_1, \ldots, v_n are n unit vector in \mathbb{R}^n . Then there exist $\epsilon_1, \ldots, \epsilon_n = \pm 1$ so that

$$\|\epsilon_1 v_1 + \dots + \epsilon_n v_n\| \leq \sqrt{n},$$

and also there exist $\epsilon_1, \ldots, \epsilon_n = \pm 1$ so that

$$\|\epsilon_1 v_1 + \dots + \epsilon_n v_n\| \ge \sqrt{n}.$$

Proof

Let $\epsilon_1, \ldots, \epsilon_n$ be selected uniformly and independently from $\{+1, -1\}$. Let $X = \|\epsilon_1 v_1 + \cdots + \epsilon_n v_n\|^2$.

Proof

Let $\epsilon_1, \ldots, \epsilon_n$ be selected uniformly and independently from $\{+1, -1\}$. Let $X = \|\epsilon_1 v_1 + \dots + \epsilon_n v_n\|^2$. $\mathbf{E}(X) = \mathbf{E}(\sum \epsilon_i \epsilon_j v_i \cdot v_j)$ i, j=1 $= \sum \mathbf{E}(\epsilon_i \epsilon_j) v_i \cdot v_j$ i.i=1 $=\sum \delta_i^j v_i \cdot v_j$ i.i=1n $= \sum ||v_i||^2 = n.$ i=1

An extension

Theorem: Let $v_1, \ldots, v_n \in \mathbb{R}^n$, all $||v_i|| \leq 1$. Let $p_1, p_2, \ldots, p_n \in [0, 1]$ be arbitrary and set $w = p_1v_1 + p_2v_2 + \cdots + p_nv_n$. Then there exist $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}$ so that setting $v = \epsilon_1v_1 + \cdots + \epsilon_nv_n$,

$$\|w - v\| \le \frac{\sqrt{n}}{2}$$

An extension

Theorem: Let $v_1, \ldots, v_n \in \mathbb{R}^n$, all $||v_i|| \leq 1$. Let $p_1, p_2, \ldots, p_n \in [0, 1]$ be arbitrary and set $w = p_1v_1 + p_2v_2 + \cdots + p_nv_n$. Then there exist $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}$ so that setting $v = \epsilon_1v_1 + \cdots + \epsilon_nv_n$,

$$\|w - v\| \le \frac{\sqrt{n}}{2}$$

Hint: Pick ϵ_i independently with

$$\Pr(\epsilon_i = 1) = p_i, \quad \Pr(\epsilon_i = 0) = 1 - p_i.$$

The proof is similar.

Unbalancing lights

Theorem: Let $a_{ij} = \pm 1$ for $1 \le i, j \le n$. Then there exist $x_i, y_j = \pm 1, 1 \le i, j \le n$ so that

$$\sum_{i,j=1}^{n} a_{ij} x_i y_j \ge \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{3/2}$$

Unbalancing lights

Theorem: Let $a_{ij} = \pm 1$ for $1 \le i, j \le n$. Then there exist $x_i, y_j = \pm 1$, $1 \le i, j \le n$ so that

$$\sum_{i,j=1}^{n} a_{ij} x_i y_j \ge \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{3/2}$$

Proof: Choose $y_j = 1$ or -1 randomly and independently. Let $R_i = \sum_{i=1}^n a_{ij}y_j$. Let x_i be the sign of R_i . Then

$$\sum_{i,j=1}^{n} a_{ij} x_i y_j = \sum_{i=1}^{n} |R_i|.$$

Each R_i has the distribution $S_n = \sum_{i=1}^n X_i$, where X_i 's are independent uniform $\{-1, 1\}$ random variables.

Each R_i has the distribution $S_n = \sum_{i=1}^n X_i$, where X_i 's are independent uniform $\{-1, 1\}$ random variables. We have

$$E(|S_n|) = n2^{1-n} \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$$
$$= \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{1/2}$$

Each R_i has the distribution $S_n = \sum_{i=1}^n X_i$, where X_i 's are independent uniform $\{-1, 1\}$ random variables. We have

$$E(|S_n|) = n2^{1-n} \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$$
$$= \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{1/2}$$

Hence,

$$\sum_{i=1}^{n} \mathrm{E}(|R_i|) = \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{3/2}.$$

 $A = (a_{ij})$: an $n \times n$ matrix with all $a_{i,j} \in \{0,1\}$.

 $A = (a_{ij})$: an $n \times n$ matrix with all $a_{i,j} \in \{0, 1\}$. S: the set of permutations $\sigma \in S_n$, with $a_{i,\sigma(i)} = 1$ for all i.

 $A = (a_{ij})$: an $n \times n$ matrix with all $a_{i,j} \in \{0,1\}$.

- S: the set of permutations $\sigma \in S_n$, with $a_{i,\sigma(i)} = 1$ for all i.
- per(A) = |S|: the permanent of A.

- $A = (a_{ij})$: an $n \times n$ matrix with all $a_{i,j} \in \{0,1\}$.
- S: the set of permutations $\sigma \in S_n$, with $a_{i,\sigma(i)} = 1$ for all i.
- per(A) = |S|: the permanent of A.
 - r_i : the *i*-th row sum.

- $A = (a_{ij})$: an $n \times n$ matrix with all $a_{i,j} \in \{0,1\}$.
 - S: the set of permutations $\sigma \in S_n$, with $a_{i,\sigma(i)} = 1$ for all i.
 - per(A) = |S|: the permanent of A.
 - r_i : the *i*-th row sum.

Brégman's Theorem (1973): $per(A) \leq \prod_{1 \leq i \leq n} (r_i!)^{1/r_i}$.

Pick $\sigma \in S_n$ and $\tau \in S_n$ independently and uniformly.

Pick $\sigma \in S_n$ and $\tau \in S_n$ independently and uniformly.

• Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \le i \le n$.

Pick $\sigma \in S_n$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \le i \le n$.
 - $R_{ au(i)}$: the au(i)'s row sum of $A^{(i)}$.

Pick $\sigma \in S_n$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \le i \le n$.
- $R_{\tau(i)}$: the $\tau(i)$'s row sum of $A^{(i)}$. • $L = L(\sigma, \tau) := \prod_{i=1}^{n} R_{\tau(i)}$.

Pick $\sigma \in S_n$ and $\tau \in S_n$ independently and uniformly.

• Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \le i \le n$.

•
$$R_{ au(i)}$$
: the $au(i)$'s row sum of $A^{(i)}$.

•
$$L = L(\sigma, \tau) := \prod_{i=1}^{n} R_{\tau(i)}.$$

•
$$G(L) := e^{\mathrm{E}(\ln L)} = e^{\sum_{i=1}^{n} \mathrm{E}(\ln R_{\tau(i)})}.$$

Pick $\sigma \in S_n$ and $\tau \in S_n$ independently and uniformly.

• Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \le i \le n$.

•
$$R_{\tau(i)}$$
: the $\tau(i)$'s row sum of $A^{(i)}$.

•
$$L = L(\sigma, \tau) := \prod_{i=1}^{n} R_{\tau(i)}.$$

•
$$G(L) := e^{\mathrm{E}(\ln L)} = e^{\sum_{i=1}^{n} \mathrm{E}(\ln R_{\tau(i)})}.$$

Claim: $per(A) \le G(L).$

For any fixed τ . Assume $\tau(1) = 1$. By re-ordering, assume the first row has ones in the first $r := r_1$ columns. For $1 \le j \le r$ let t_j be the permanent of A with the first row and j-th column removed (i.e., $\sigma(1) = j$). Let

$$t = \frac{t_1 + \dots + t_r}{r} = \frac{\operatorname{per}(A)}{r}.$$

For any fixed τ . Assume $\tau(1) = 1$. By re-ordering, assume the first row has ones in the first $r := r_1$ columns. For $1 \le j \le r$ let t_j be the permanent of A with the first row and j-th column removed (i.e., $\sigma(1) = j$). Let

$$t = \frac{t_1 + \dots + t_r}{r} = \frac{\operatorname{per}(A)}{r}.$$

By induction,

$$G(R_2 \cdots R_n | \sigma(1) = j) \ge t_j.$$

$$G(L) \ge \prod_{j=1}^{r} (rt_j)^{t_j/per(A)} = r \prod_{j=1}^{r} (t_j)^{t_j/rt}.$$

Topic Course on Probabilistic Methods (week 2)

Since
$$\left(\prod_{j=1}^{r} t_{j}^{t_{j}}\right)^{\frac{1}{r}} \ge t^{t}$$
, we have
 $G(L) \ge r \prod_{j=1}^{r} t_{j}^{t_{j}/rt} \ge r(t^{t})^{1/t} = rt = per(A).$

Since
$$\left(\prod_{j=1}^{r} t_{j}^{t_{j}}\right)^{\frac{1}{r}} \ge t^{t}$$
, we have
 $G(L) \ge r \prod_{j=1}^{r} t_{j}^{t_{j}/rt} \ge r(t^{t})^{1/t} = rt = per(A).$

Now we calculate G[L] conditional on a fixed σ . By reordering, assume $\sigma(i) = i$ for all i. Note

$$G(R_i) = (r_i!)^{1/r_i}.$$

Since
$$\left(\prod_{j=1}^{r} t_{j}^{t_{j}}\right)^{\frac{1}{r}} \ge t^{t}$$
, we have
 $G(L) \ge r \prod_{j=1}^{r} t_{j}^{t_{j}/rt} \ge r(t^{t})^{1/t} = rt = per(A).$

Now we calculate G[L] conditional on a fixed σ . By reordering, assume $\sigma(i) = i$ for all i. Note

$$G(R_i) = (r_i!)^{1/r_i}.$$

$$G(R) = G(\prod_{i=1}^{n} R_i) = \prod_{i=1}^{n} (r_i!)^{1/r_i}.$$

Topic Course on Probabilistic Methods (week 2)

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X = \sum_{\sigma \in S_n} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$\mathcal{E}(X_{\sigma}) = 2^{-(n-1)}.$$

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X = \sum_{\sigma \in S_n} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$\mathcal{E}(X_{\sigma}) = 2^{-(n-1)}.$$

We have

$$\mathcal{E}(X) = \sum_{\sigma \in S_n} \mathcal{E}(X_{\sigma}) = n! 2^{1-n}.$$

Done!

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \le \lim_{n \to \infty} \left(\frac{P(n)}{n!}\right)^{1/n} \le \frac{1}{2^{3/4}}.$$

He conjecture that
$$\lim_{n\to\infty} \left(\frac{P(n)}{n!}\right)^{1/n} = \frac{1}{2}$$
.

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \le \lim_{n \to \infty} \left(\frac{P(n)}{n!}\right)^{1/n} \le \frac{1}{2^{3/4}}.$$

He conjecture that $\lim_{n\to\infty} \left(\frac{P(n)}{n!}\right)^{1/n} = \frac{1}{2}$.

This conjecture was proved by Alon in 1990.

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \le \lim_{n \to \infty} \left(\frac{P(n)}{n!}\right)^{1/n} \le \frac{1}{2^{3/4}}.$$

He conjecture that
$$\lim_{n\to\infty} \left(\frac{P(n)}{n!}\right)^{1/n} = \frac{1}{2}$$
.

This conjecture was proved by Alon in 1990. **Theorem [Alon, 1990]:** $P(n) \leq cn^{3/2} \frac{n!}{2^{n-1}}$.

Alon's proof

Alon's proof

C(T): the number of directed Hamiltonian cycles of T. F(T): the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.

Alon's proof

- C(T): the number of directed Hamiltonian cycles of T. F(T): the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
- $A_T = (a_{ij})$: the adjacency matrix of T, where $a_{ij} = 1$ if $i \rightarrow j$ and 0 otherwise.

Alon's proof

- C(T): the number of directed Hamiltonian cycles of T.
 F(T): the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
 A_T = (a_{ij}): the adjacency matrix of T, where a_{ij} = 1 if
 - $i \rightarrow j$ and 0 otherwise.

$$F(T) = per(A_T) \le \prod_{i=1}^n (r_i!)^{1/r_i}.$$

Here r_i is *i*-th row sum of A_T ; $\sum_{i=1}^n r_i = \binom{n}{2}$.

Topic Course on Probabilistic Methods (week 2)

Lemma: For every two integers a, b satisfying $b \ge a+2 > a \ge 1$, we have

 $(a!)^{1/a}(b!)^{1/b} < ((a+1)!)^{1/(a+1)}((b-1)!)^{1/(b-1)}.$

Lemma: For every two integers a, b satisfying $b \ge a+2 > a \ge 1$, we have

$$(a!)^{1/a}(b!)^{1/b} < ((a+1)!)^{1/(a+1)}((b-1)!)^{1/(b-1)}.$$

Proof: Let $f(x) = \frac{(x!)^{1/x}}{((x+1)!)^{1/(1+x)}}$. We need to show f(a) < f(b-1). It suffices to show f(x-1) < f(x).

$$((x-1)!)^{1/(x-1)}((x+1)!)^{1/(1+x)} < (x!)^{2/x}.$$

Topic Course on Probabilistic Methods (week 2)

Lemma: For every two integers a, b satisfying $b \ge a + 2 > a \ge 1$, we have

$$(a!)^{1/a}(b!)^{1/b} < ((a+1)!)^{1/(a+1)}((b-1)!)^{1/(b-1)}.$$

Proof: Let $f(x) = \frac{(x!)^{1/x}}{((x+1)!)^{1/(1+x)}}$. We need to show f(a) < f(b-1). It suffices to show f(x-1) < f(x). $((x-1)!)^{1/(x-1)}((x+1)!)^{1/(1+x)} < (x!)^{2/x}$. Simplifying it, we get $(\frac{x^x}{x!})^2 > (1+\frac{1}{x})^{x(x-1)}$.

Topic Course on Probabilistic Methods (week 2)

Lemma: For every two integers a, b satisfying $b \ge a + 2 > a \ge 1$, we have

$$(a!)^{1/a}(b!)^{1/b} < ((a+1)!)^{1/(a+1)}((b-1)!)^{1/(b-1)}.$$

Proof: Let $f(x) = \frac{(x!)^{1/x}}{((x+1)!)^{1/(1+x)}}$. We need to show f(a) < f(b-1). It suffices to show f(x-1) < f(x).

$$((x-1)!)^{1/(x-1)}((x+1)!)^{1/(1+x)} < (x!)^{2/x}.$$

Simplifying it, we get $\left(\frac{x^x}{x!}\right)^2 > \left(1 + \frac{1}{x}\right)^{x(x-1)}$.

It can be proved using $x! > (\frac{x+1}{2})^x$ for $x \ge 2$.

Proof of theorem

Observe that $\prod_{i=1}^{n} (r_i!)^{1/r_i}$ achieves the maximum when all r_i 's are almost equal. We get

$$F(T) \le (1+o(1))\frac{\sqrt{\pi}}{\sqrt{2}e}n^{3/2}\frac{(n-1)!}{2^n}$$

Proof of theorem

Observe that $\prod_{i=1}^{n} (r_i!)^{1/r_i}$ achieves the maximum when all r_i 's are almost equal. We get

$$F(T) \le (1+o(1))\frac{\sqrt{\pi}}{\sqrt{2}e}n^{3/2}\frac{(n-1)!}{2^n}$$

Construct a new tournament T' for T by adding a new vertex v, where the edges from v to T are oriented randomly and independently. Every Hamiltonian path in T can be extended to a Hamiltonian cycle in T' with probability $\frac{1}{4}$. We have

$$P(T) \le \frac{1}{4}C(T') = O\left(n^{3/2}\frac{n!}{2^{n-1}}\right).$$

 $\alpha(G)$: the maximal size of an independent set of a graph G.

 $\alpha(G)$: the maximal size of an independent set of a graph G. **Theorem [Caro (1979), Wei(1981)]** $\alpha(G) \ge \sum_{v \in V} \frac{1}{d_v + 1}$.

 $\alpha(G)$: the maximal size of an independent set of a graph G. **Theorem [Caro (1979), Wei(1981)]** $\alpha(G) \ge \sum_{v \in V} \frac{1}{d_v+1}$. **Proof:** Pick a random permutation σ on V. Define

$$I = \{ v \in V \colon vw \in E \Rightarrow \sigma(v) < \sigma(w) \}.$$

Then I is an independent set.

 $\alpha(G)$: the maximal size of an independent set of a graph G. **Theorem [Caro (1979), Wei(1981)]** $\alpha(G) \ge \sum_{v \in V} \frac{1}{d_v+1}$. **Proof:** Pick a random permutation σ on V. Define

$$I = \{ v \in V \colon vw \in E \Rightarrow \sigma(v) < \sigma(w) \}.$$

Then I is an independent set. Let X_v be the indicator random variable for $v \in I$.

$$E(X_v) = \Pr(v \in I) = \frac{1}{d_v + 1}.$$
$$\alpha(G) \ge E(|I|) = \sum_v \frac{1}{d_v + 1}.$$

Topic Course on Probabilistic Methods (week 2)

Turán Theorem

Turán number t(n, H): the maximum integer m such that there is a graph on n vertices containing no subgraph H.

Turán Theorem

Turán number t(n, H): the maximum integer m such that there is a graph on n vertices containing no subgraph H.

Turán Theorem: For n = km + r ($0 \le r < k$),

$$t(n, K_{k+1}) = m^2 \binom{k}{2} + rm(k-1) + \binom{r}{2}.$$

The equality holds if and only if G is the complete k-partite graph with equitable partitions, denoted by $G_{n,k}$.

For any $k \leq n$, let q, r satisfy n = kq + r, $0 \leq r < k$. Let $e = r \binom{q+1}{2} + (m-r) \binom{q}{2}$.

For any $k \leq n$, let q, r satisfy n = kq + r, $0 \leq r < k$. Let $e = r \binom{q+1}{2} + (m-r) \binom{q}{2}$.

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \ge k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

For any $k \leq n$, let q, r satisfy n = kq + r, $0 \leq r < k$. Let $e = r \binom{q+1}{2} + (m-r) \binom{q}{2}$.

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \ge k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

Proof: By Caro-Wei's theorem, $\alpha(G) \ge \sum_{v} \frac{1}{d_v+1}$.

For any $k \leq n$, let q, r satisfy n = kq + r, $0 \leq r < k$. Let $e = r \binom{q+1}{2} + (m-r) \binom{q}{2}$.

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \ge k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

Proof: By Caro-Wei's theorem, $\alpha(G) \ge \sum_{v} \frac{1}{d_{v}+1}$. The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible.

Topic Course on Probabilistic Methods (week 2)

For any $k \leq n$, let q, r satisfy n = kq + r, $0 \leq r < k$. Let $e = r \binom{q+1}{2} + (m-r) \binom{q}{2}$.

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \ge k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

Proof: By Caro-Wei's theorem, $\alpha(G) \ge \sum_{v} \frac{1}{d_v+1}$. The minimum of $\sum_{v} \frac{1}{d_v+1}$ is reached as the d_v as close together as possible. Since each clique contributes one, we have

$$\sum_{v} \frac{1}{d_v + 1} \ge k.$$

For any $k \leq n$, let q, r satisfy n = kq + r, $0 \leq r < k$. Let $e = r \binom{q+1}{2} + (m-r) \binom{q}{2}$.

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \ge k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

Proof: By Caro-Wei's theorem, $\alpha(G) \ge \sum_{v} \frac{1}{d_v+1}$. The minimum of $\sum_{v} \frac{1}{d_v+1}$ is reached as the d_v as close together as possible. Since each clique contributes one, we have

When the equality holds, I is a constant. G can not contain an induced P_2 . Therefore $G = \overline{G}_{n,k}$.

Mantel (1907): $t(n, K_3) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$.

Mantel (1907): $t(n, K_3) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$. Turán (1941): $t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1)) {n \choose 2}$.

- Mantel (1907): $t(n, K_3) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$.
- **Turán (1941):** $t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1)) {n \choose 2}.$
- Erdős-Simonovits-Stone (1966): If $\chi(H) > 2$, then $t(n, H) = (1 \frac{1}{\chi(H) 1} + o(1)) \binom{n}{2}$.

- Mantel (1907): $t(n, K_3) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$.
- **Turán (1941):** $t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1))\binom{n}{2}.$
- Erdős-Simonovits-Stone (1966): If $\chi(H) > 2$, then $t(n, H) = (1 \frac{1}{\chi(H) 1} + o(1)) \binom{n}{2}$.
 - **Kővári-Sós-Turán (1954):** For $2 \le r \le s$, $t(n, K_{r,s}) < cs^{1/r}n^{2-1/r} + O(n)$.

- Mantel (1907): $t(n, K_3) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$.
- **Turán (1941):** $t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1)) {n \choose 2}.$
- Erdős-Simonovits-Stone (1966): If $\chi(H) > 2$, then $t(n, H) = (1 \frac{1}{\chi(H) 1} + o(1)) \binom{n}{2}$.
 - **Kővári-Sós-Turán (1954):** For $2 \le r \le s$, $t(n, K_{r,s}) < cs^{1/r}n^{2-1/r} + O(n)$.
 - Erdős-Bondy-Simonovits (1963,1974): $t(n, C_{2k}) \le ckn^{1+1/k}$.

• Conjecture: for $r \ge 4$, $t(n, K_{r,r}) > cn^{2-1/r}$.

- Conjecture: for $r \ge 4$, $t(n, K_{r,r}) > cn^{2-1/r}$.
- **Conjecture (\$100):** If *H* is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H) = O(n^{2-1/r})$.

- Conjecture: for $r \ge 4$, $t(n, K_{r,r}) > cn^{2-1/r}$.
- Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H) = O(n^{2-1/r}).$
 - Conjecture: $t(n, C_{2k}) \ge cn^{1+1/k}$ for k = 4 and $k \ge 6$.

- Conjecture: for $r \ge 4$, $t(n, K_{r,r}) > cn^{2-1/r}$.
- Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H) = O(n^{2-1/r}).$
- Conjecture: $t(n, C_{2k}) \ge cn^{1+1/k}$ for k = 4 and $k \ge 6$.
- Conjecture (\$250 for proof and \$100 for disproof:) Suppose H is a bipartite graph. Prove or disprove that $t(n, H) = O(n^{3/2})$ if and only if H does not contain a subgraph each vertex of which has degree > 2.

