Topic Course on Probabilistic Methods

 (Week 2)Linearity of Expectation (2)

Linyuan Lu
University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Linearity of Expectation (2)

- Disjoint pairs
- k-sets
- Balancing vectors
- Unbalancing lights
- Brégman's Theorem
- Hamliton paths
- Independence number
- Turán Theorem

Disjoint pairs

$$
\begin{aligned}
& \mathcal{F} \subset 2^{[n]} \\
& \text { ■ } d(\mathcal{F}):=\left|\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime}=\emptyset\right\}\right| .
\end{aligned}
$$

Disjoint pairs

- $\mathcal{F} \subset 2^{[n]}$.

■ $d(\mathcal{F}):=\left|\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime}=\emptyset\right\}\right|$.

> Daykin and Erdős conjectured if $|\mathcal{F}|=2^{(1 / 2+\delta) n}$ then $d(\mathcal{F})=o\left(|\mathcal{F}|^{2}\right)$.

Disjoint pairs

- $\mathcal{F} \subset 2^{[n]}$.
- $d(\mathcal{F}):=\left|\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime}=\emptyset\right\}\right|$.

Daykin and Erdős conjectured if $|\mathcal{F}|=2^{(1 / 2+\delta) n}$ then $d(\mathcal{F})=o\left(|\mathcal{F}|^{2}\right)$.

Theorem [Alon-Frankl, 1985]: If $|\mathcal{F}|=2^{(1 / 2+\delta) n}$, then

$$
d(\mathcal{F})<|\mathcal{F}|^{2-\delta^{2} / 2}
$$

Proof

$$
\text { Let } m:=2^{(1 / 2+\delta) n} \text {. Suppose } d(\mathcal{F})<m^{2-\delta^{2} / 2}
$$

Proof

Let $m:=2^{(1 / 2+\delta) n}$. Suppose $d(\mathcal{F})<m^{2-\delta^{2} / 2}$.
Pick independently t members $A_{1}, A_{2}, \ldots, A_{t}$ of \mathcal{F} with repetitions at random.

Proof

$$
\text { Let } m:=2^{(1 / 2+\delta) n} \text {. Suppose } d(\mathcal{F})<m^{2-\delta^{2} / 2} \text {. }
$$

Pick independently t members $A_{1}, A_{2}, \ldots, A_{t}$ of \mathcal{F} with repetitions at random.

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\cup_{i=1}^{t} A_{i}\right| \leq \frac{n}{2}\right) \\
\leq & \sum_{|S|=\frac{n}{2}} \operatorname{Pr}\left(\wedge_{i=1}^{t}\left(A_{i} \subset S\right)\right) \\
\leq & 2^{n}\left(\frac{2^{n / 2}}{2^{(1 / 2+\delta) n}}\right)^{t} \\
= & 2^{n(1-\delta t)} .
\end{aligned}
$$

continue

Let $v(B)=|\{A \in \mathcal{F}: B \cap A=\emptyset\}|$. Then

$$
\sum_{B} v(B)=2 d(\mathcal{F}) \geq 2 m^{2-\delta^{2} / 2}
$$

continue

Let $v(B)=|\{A \in \mathcal{F}: B \cap A=\emptyset\}|$. Then

$$
\sum_{B} v(B)=2 d(\mathcal{F}) \geq 2 m^{2-\delta^{2} / 2}
$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all $A_{i} 1 \leq i \leq t$.

continue

Let $v(B)=|\{A \in \mathcal{F}: B \cap A=\emptyset\}|$. Then

$$
\sum_{B} v(B)=2 d(\mathcal{F}) \geq 2 m^{2-\delta^{2} / 2}
$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all $A_{i} 1 \leq i \leq t$. Then

$$
\begin{aligned}
E(|Y|) & =\sum_{B \in \mathcal{F}}\left(\frac{v(B)}{m}\right)^{t} \\
& \geq \frac{1}{m^{t-1}}\left(\frac{\sum_{B} v(B)}{m}\right)^{t} \\
& \geq 2 m^{1-t \delta^{2} / 2}
\end{aligned}
$$

continue

Since $Y \leq m$, we get

$$
\operatorname{Pr}\left(Y \geq m^{1-t \delta^{2} / 2}\right) \geq m^{-t \delta^{2} / 2}
$$

continue

Since $Y \leq m$, we get

$$
\operatorname{Pr}\left(Y \geq m^{1-t \delta^{2} / 2}\right) \geq m^{-t \delta^{2} / 2}
$$

Choose $t=\left\lceil 1+\frac{1}{\delta}\right\rceil$. We have $m^{-t \delta^{2} / 2}>2^{n(1-\delta t)}$.

continue

Since $Y \leq m$, we get

$$
\operatorname{Pr}\left(Y \geq m^{1-t \delta^{2} / 2}\right) \geq m^{-t \delta^{2} / 2}
$$

Choose $t=\left\lceil 1+\frac{1}{\delta}\right\rceil$. We have $m^{-t \delta^{2} / 2}>2^{n(1-\delta t)}$.
Thus, with positive probability, $\left|\cup_{i=1}^{t} A_{i}\right|>\frac{n}{2}$ and $\cup_{i=1}^{t} A_{i}$ is disjoint to more than $2^{n / 2}$ members of \mathcal{F}. Contradiction. \square

Linearity of expectation

Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and $X=\sum_{i=1}^{n} c_{i} X_{i}$. Then

$$
\mathrm{E}(X)=\sum_{i=1}^{n} c_{i} \mathrm{E}\left(X_{i}\right)
$$

Linearity of expectation

Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and $X=\sum_{i=1}^{n} c_{i} X_{i}$. Then

$$
\mathrm{E}(X)=\sum_{i=1}^{n} c_{i} \mathrm{E}\left(X_{i}\right) .
$$

Philosophy: There is a point in the probability space for which $X \geq \mathrm{E}(X)$ and a point for $X \leq \mathrm{E}(X)$.

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least $m / 2$ edges.

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least $m / 2$ edges.
Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least $m / 2$ edges.
Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability. Let X be the number of crossing edges (from L to R). Let $X_{u v}$ be the indicator variable of the edge $u v$ is crossing.

$$
\mathrm{E}\left(X_{u v}\right)=\frac{1}{2} .
$$

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least $m / 2$ edges.
Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability. Let X be the number of crossing edges (from L to R). Let $X_{u v}$ be the indicator variable of the edge $u v$ is crossing.

$$
\begin{gathered}
\mathrm{E}\left(X_{u v}\right)=\frac{1}{2} . \\
\mathrm{E}(X)=\sum_{u v \in E} \mathrm{E}\left(X_{u v}\right)=\frac{m}{2} .
\end{gathered}
$$

k-sets

- $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$: a partition of equal parts, where $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$.

k-sets

- $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$: a partition of equal parts, where $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$.
$h: V^{k} \rightarrow\{-1,1\}$.

k-sets

■ $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$: a partition of equal parts, where $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$.

- $h: V^{k} \rightarrow\{-1,1\}$.

For $S \subset V$, let $h(S)=\sum_{F \subset S} h(F)$.

k-sets

■ $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$: a partition of equal parts, where $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$.

- $h: V^{k} \rightarrow\{-1,1\}$.

For $S \subset V$, let $h(S)=\sum_{F \subset S} h(F)$.
A k-set F is crossing if it contains precisely one point form each V_{i}.

k-sets

■ $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$: a partition of equal parts, where $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$.
■ $h: V^{k} \rightarrow\{-1,1\}$.

- For $S \subset V$, let $h(S)=\sum_{F \subset S} h(F)$.
- A k-set F is crossing if it contains precisely one point form each V_{i}.

Theorem: Suppose $h(F)=+1$ for all crossing k-sets F. Then there is an $S \subset V$ for which

$$
|h(S)| \geq c_{k} n^{k} .
$$

Here $c_{k}>0$.

A Lemma

Lemma: Let P_{k} be the set of all homogeneous polynomials $f\left(p_{1}, \ldots, p_{k}\right)$ of degree k with all coefficients have absolute value at most one and $p_{1} p_{2} \cdots p_{k}$ having coefficient one.
Then for all $f \in P_{k}$ there exists $p_{1}, \ldots, p_{k} \in[0,1]$ with

$$
\left|f\left(p_{1}, \ldots, p_{k}\right)\right| \geq c_{k}
$$

Here $c_{k}>0$, independent of n.

A Lemma

Lemma: Let P_{k} be the set of all homogeneous polynomials $f\left(p_{1}, \ldots, p_{k}\right)$ of degree k with all coefficients have absolute value at most one and $p_{1} p_{2} \cdots p_{k}$ having coefficient one. Then for all $f \in P_{k}$ there exists $p_{1}, \ldots, p_{k} \in[0,1]$ with

$$
\left|f\left(p_{1}, \ldots, p_{k}\right)\right| \geq c_{k}
$$

Here $c_{k}>0$, independent of n.
Proof: Let $M(f)=\max _{p_{1}, \ldots, p_{k}}\left|f\left(p_{1}, \ldots, p_{k}\right)\right|$. Note P_{k} is compact and M is continuous. M reaches its minimum value c_{k} at some point f_{0}. We have

$$
c_{k}=M\left(f_{0}\right)>0 .
$$

\square

Proof of theorem

Let S be a random set of V by setting

$$
\operatorname{Pr}(x \in S)=p_{i}, \quad x \in V_{i} .
$$

Proof of theorem

Let S be a random set of V by setting

$$
\operatorname{Pr}(x \in S)=p_{i}, \quad x \in V_{i} .
$$

Let

$$
X_{F}= \begin{cases}h(F) & \text { if } F \subset S \\ 0 & \text { otherwise }\end{cases}
$$

Proof of theorem

Let S be a random set of V by setting

$$
\operatorname{Pr}(x \in S)=p_{i}, \quad x \in V_{i} .
$$

Let

$$
X_{F}= \begin{cases}h(F) & \text { if } F \subset S \\ 0 & \text { otherwise }\end{cases}
$$

Say F has type $\left(a_{1}, \ldots, a_{k}\right)$ if $\left|F \cap V_{i}\right|=a_{i}, 1 \leq i \leq k$.

Proof of theorem

Let S be a random set of V by setting

$$
\operatorname{Pr}(x \in S)=p_{i}, \quad x \in V_{i} .
$$

Let

$$
X_{F}= \begin{cases}h(F) & \text { if } F \subset S \\ 0 & \text { otherwise }\end{cases}
$$

Say F has type $\left(a_{1}, \ldots, a_{k}\right)$ if $\left|F \cap V_{i}\right|=a_{i}, 1 \leq i \leq k$. For these F,

$$
\mathrm{E}\left(X_{F}\right)=h(F) p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} .
$$

continue

$$
\mathrm{E}(X)=\sum_{\sum_{i=1}^{k} a_{i}=k} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \sum_{F \text { of type }\left(a_{1}, \ldots, a_{k}\right)} h(F)
$$

continue

$$
\mathrm{E}(X)=\sum_{\sum_{i=1}^{k} a_{i}=k} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \sum_{F \text { of type }\left(a_{1}, \ldots, a_{k}\right)} h(F) .
$$

Let $f\left(p_{1}, \ldots, p_{k}\right)=\frac{1}{n^{k}} \mathrm{E}(X)$. Then $f \in P_{k}$.

continue

$$
\mathrm{E}(X)=\sum_{\sum_{i=1}^{k} a_{i}=k} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \sum_{F \text { of type }\left(a_{1}, \ldots, a_{k}\right)} h(F) .
$$

Let $f\left(p_{1}, \ldots, p_{k}\right)=\frac{1}{n^{k}} \mathrm{E}(X)$. Then $f \in P_{k}$.
Now select $p_{1}, \ldots, p_{k} \in[0,1]$ with $\left|f\left(p_{1}, \ldots, p_{k}\right)\right| \geq c_{k}$. Then $\mathrm{E}(|X|) \geq|\mathrm{E}(X)| \geq c_{k} n^{k}$.

continue

$$
\mathrm{E}(X)=\sum_{\sum_{i=1}^{k} a_{i}=k} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \sum_{F \text { of type }\left(a_{1}, \ldots, a_{k}\right)} h(F) .
$$

Let $f\left(p_{1}, \ldots, p_{k}\right)=\frac{1}{n^{k}} \mathrm{E}(X)$. Then $f \in P_{k}$.
Now select $p_{1}, \ldots, p_{k} \in[0,1]$ with $\left|f\left(p_{1}, \ldots, p_{k}\right)\right| \geq c_{k}$. Then $\mathrm{E}(|X|) \geq|\mathrm{E}(X)| \geq c_{k} n^{k}$.
There exists a S such that $|h(S)| \geq c_{k} n^{k}$.

Balancing vectors

Theorem: Let v_{1}, \ldots, v_{n} are n unit vector in \mathbb{R}^{n}. Then there exist $\epsilon_{1}, \ldots, \epsilon_{n}= \pm 1$ so that

$$
\left\|\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}\right\| \leq \sqrt{n}
$$

and also there exist $\epsilon_{1}, \ldots, \epsilon_{n}= \pm 1$ so that

$$
\left\|\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}\right\| \geq \sqrt{n}
$$

Proof

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be selected uniformly and independently from $\{+1,-1\}$. Let $X=\left\|\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}\right\|^{2}$.

Proof

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be selected uniformly and independently from $\{+1,-1\}$. Let $X=\left\|\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}\right\|^{2}$.

$$
\begin{aligned}
\mathrm{E}(X) & =\mathrm{E}\left(\sum_{i, j=1}^{n} \epsilon_{i} \epsilon_{j} v_{i} \cdot v_{j}\right) \\
& =\sum_{i, j=1}^{n} \mathrm{E}\left(\epsilon_{i} \epsilon_{j}\right) v_{i} \cdot v_{j} \\
& =\sum_{i, j=1}^{n} \delta_{i}^{j} v_{i} \cdot v_{j} \\
& =\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}=n
\end{aligned}
$$

An extension

Theorem: Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, all $\left\|v_{i}\right\| \leq 1$. Let
$p_{1}, p_{2}, \ldots, p_{n} \in[0,1]$ be arbitrary and set $w=p_{1} v_{1}+p_{2} v_{2}+\cdots+p_{n} v_{n}$. Then there exist $\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}$ so that setting $v=\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}$,

$$
\|w-v\| \leq \frac{\sqrt{n}}{2}
$$

An extension

Theorem: Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, all $\left\|v_{i}\right\| \leq 1$. Let
$p_{1}, p_{2}, \ldots, p_{n} \in[0,1]$ be arbitrary and set $w=p_{1} v_{1}+p_{2} v_{2}+\cdots+p_{n} v_{n}$. Then there exist $\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}$ so that setting $v=\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}$,

$$
\|w-v\| \leq \frac{\sqrt{n}}{2}
$$

Hint: Pick ϵ_{i} independently with

$$
\operatorname{Pr}\left(\epsilon_{i}=1\right)=p_{i}, \quad \operatorname{Pr}\left(\epsilon_{i}=0\right)=1-p_{i} .
$$

The proof is similar.

Unbalancing lights

Theorem: Let $a_{i j}= \pm 1$ for $1 \leq i, j \leq n$. Then there exist $x_{i}, y_{j}= \pm 1,1 \leq i, j \leq n$ so that

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j} \geq\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{3 / 2}
$$

Unbalancing lights

Theorem: Let $a_{i j}= \pm 1$ for $1 \leq i, j \leq n$. Then there exist $x_{i}, y_{j}= \pm 1,1 \leq i, j \leq n$ so that

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j} \geq\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{3 / 2}
$$

Proof: Choose $y_{j}=1$ or -1 randomly and independently. Let $R_{i}=\sum_{i=1}^{n} a_{i j} y_{j}$. Let x_{i} be the sign of R_{i}. Then

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j}=\sum_{i=1}^{n}\left|R_{i}\right| .
$$

continue

Each R_{i} has the distribution $S_{n}=\sum_{i=1}^{n} X_{i}$, where X_{i} 's are independent uniform $\{-1,1\}$ random variables.

continue

Each R_{i} has the distribution $S_{n}=\sum_{i=1}^{n} X_{i}$, where X_{i} 's are independent uniform $\{-1,1\}$ random variables. We have

$$
\begin{aligned}
\mathrm{E}\left(\left|S_{n}\right|\right) & =n 2^{1-n}\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor} \\
& =\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{1 / 2} .
\end{aligned}
$$

continue

Each R_{i} has the distribution $S_{n}=\sum_{i=1}^{n} X_{i}$, where X_{i} 's are independent uniform $\{-1,1\}$ random variables. We have

$$
\begin{aligned}
\mathrm{E}\left(\left|S_{n}\right|\right) & =n 2^{1-n}\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor} \\
& =\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{1 / 2}
\end{aligned}
$$

Hence,

$$
\sum_{i=1}^{n} \mathrm{E}\left(\left|R_{i}\right|\right)=\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{3 / 2}
$$

Brégman's Theorem

$A=\left(a_{i j}\right):$ an $n \times n$ matrix with all $a_{i, j} \in\{0,1\}$.

Brégman's Theorem

$A=\left(a_{i j}\right):$ an $n \times n$ matrix with all $a_{i, j} \in\{0,1\}$.
S : the set of permutations $\sigma \in S_{n}$, with $a_{i, \sigma(i)}=1$ for all i.

Brégman's Theorem

$A=\left(a_{i j}\right):$ an $n \times n$ matrix with all $a_{i, j} \in\{0,1\}$.
S : the set of permutations $\sigma \in S_{n}$, with $a_{i, \sigma(i)}=1$ for all i.

■ $\operatorname{per}(A)=|S|$: the permanent of A.

Brégman's Theorem

- $A=\left(a_{i j}\right)$: an $n \times n$ matrix with all $a_{i, j} \in\{0,1\}$.

■ S : the set of permutations $\sigma \in S_{n}$, with $a_{i, \sigma(i)}=1$ for all i.

- $\operatorname{per}(A)=|S|$: the permanent of A.
- r_{i} : the i-th row sum.

Brégman's Theorem

- $A=\left(a_{i j}\right)$: an $n \times n$ matrix with all $a_{i, j} \in\{0,1\}$.

■ S : the set of permutations $\sigma \in S_{n}$, with $a_{i, \sigma(i)}=1$ for all i.

- $\operatorname{per}(A)=|S|$: the permanent of A.
- r_{i} : the i-th row sum.

Brégman's Theorem (1973): $\operatorname{per}(A) \leq \prod_{1 \leq i \leq n}\left(r_{i}!\right)^{1 / r_{i}}$.

Proof [Schrijver 1978]

Pick $\sigma \in S_{n}$ and $\tau \in S_{n}$ independently and uniformly.

Proof [Schrijver 1978]

Pick $\sigma \in S_{n}$ and $\tau \in S_{n}$ independently and uniformly.

- Let $A^{(1)}:=A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \leq i \leq n$.

Proof [Schrijver 1978]

Pick $\sigma \in S_{n}$ and $\tau \in S_{n}$ independently and uniformly.

- Let $A^{(1)}:=A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \leq i \leq n$.
- $\quad R_{\tau(i)}$: the $\tau(i)$'s row sum of $A^{(i)}$.

Proof [Schrijver 1978]

Pick $\sigma \in S_{n}$ and $\tau \in S_{n}$ independently and uniformly.
■ Let $A^{(1)}:=A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \leq i \leq n$.

- $\quad R_{\tau(i)}$: the $\tau(i)$'s row sum of $A^{(i)}$.

■ $L=L(\sigma, \tau):=\prod_{i=1}^{n} R_{\tau(i)}$.

Proof [Schrijver 1978]

Pick $\sigma \in S_{n}$ and $\tau \in S_{n}$ independently and uniformly.

- Let $A^{(1)}:=A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \leq i \leq n$.
- $\quad R_{\tau(i)}$: the $\tau(i)$'s row sum of $A^{(i)}$.

■ $L=L(\sigma, \tau):=\prod_{i=1}^{n} R_{\tau(i)}$.

- $G(L):=e^{\mathrm{E}(\ln L)}=e^{\sum_{i=1}^{n} \mathrm{E}\left(\ln R_{\tau(i)}\right)}$.

Proof [Schrijver 1978]

Pick $\sigma \in S_{n}$ and $\tau \in S_{n}$ independently and uniformly.

- Let $A^{(1)}:=A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \leq i \leq n$.
- $\quad R_{\tau(i)}$: the $\tau(i)$'s row sum of $A^{(i)}$.

■ $L=L(\sigma, \tau):=\prod_{i=1}^{n} R_{\tau(i)}$.
■ $G(L):=e^{\mathrm{E}(\ln L)}=e^{\sum_{i=1}^{n} \mathrm{E}\left(\ln R_{\tau(i)}\right)}$.
Claim: $\operatorname{per}(A)) \leq G(L)$.

continue

For any fixed τ. Assume $\tau(1)=1$. By re-ordering, assume the first row has ones in the first $r:=r_{1}$ columns. For $1 \leq j \leq r$ let t_{j} be the permanent of A with the first row and j-th column removed (i.e., $\sigma(1)=j$). Let

$$
t=\frac{t_{1}+\cdots+t_{r}}{r}=\frac{\operatorname{per}(A)}{r} .
$$

continue

For any fixed τ. Assume $\tau(1)=1$. By re-ordering, assume the first row has ones in the first $r:=r_{1}$ columns. For $1 \leq j \leq r$ let t_{j} be the permanent of A with the first row and j-th column removed (i.e., $\sigma(1)=j$). Let

$$
t=\frac{t_{1}+\cdots+t_{r}}{r}=\frac{\operatorname{per}(A)}{r} .
$$

By induction,

$$
\begin{gathered}
G\left(R_{2} \cdots R_{n} \mid \sigma(1)=j\right) \geq t_{j} . \\
G(L) \geq \prod_{j=1}^{r}\left(r t_{j}\right)^{t_{j} / \operatorname{per}(A)}=r \prod_{j=1}^{r}\left(t_{j}\right)^{t_{j} / r t} .
\end{gathered}
$$

continue

Since $\left(\prod_{j=1}^{r} t_{j}^{t_{j}}\right)^{\frac{1}{r}} \geq t^{t}$, we have

$$
G(L) \geq r \prod_{j=1}^{r} t_{j}^{t_{j} / r t} \geq r\left(t^{t}\right)^{1 / t}=r t=\operatorname{per}(A)
$$

continue

Since $\left(\prod_{j=1}^{r} t_{j}^{t_{j}}\right)^{\frac{1}{r}} \geq t^{t}$, we have

$$
G(L) \geq r \prod_{j=1}^{r} t_{j}^{t_{j} / r t} \geq r\left(t^{t}\right)^{1 / t}=r t=\operatorname{per}(A)
$$

Now we calculate $G[L]$ conditional on a fixed σ. By reordering, assume $\sigma(i)=i$ for all i. Note

$$
G\left(R_{i}\right)=\left(r_{i}!\right)^{1 / r_{i}} .
$$

continue

Since $\left(\prod_{j=1}^{r} t_{j}^{t_{j}}\right)^{\frac{1}{r}} \geq t^{t}$, we have

$$
G(L) \geq r \prod_{j=1}^{r} t_{j}^{t_{j} / r t} \geq r\left(t^{t}\right)^{1 / t}=r t=\operatorname{per}(A) .
$$

Now we calculate $G[L]$ conditional on a fixed σ. By reordering, assume $\sigma(i)=i$ for all i. Note

$$
\begin{gathered}
G\left(R_{i}\right)=\left(r_{i}!\right)^{1 / r_{i}} \\
G(R)=G\left(\prod_{i=1}^{n} R_{i}\right)=\prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
\end{gathered}
$$

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.
Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X=\sum_{\sigma \in S_{n}} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$
\mathrm{E}\left(X_{\sigma}\right)=2^{-(n-1)} .
$$

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.
Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X=\sum_{\sigma \in S_{n}} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$
\mathrm{E}\left(X_{\sigma}\right)=2^{-(n-1)} .
$$

We have

$$
\mathrm{E}(X)=\sum_{\sigma \in S_{n}} \mathrm{E}\left(X_{\sigma}\right)=n!2^{1-n}
$$

Done!

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.
This conjecture was proved by Alon in 1990.

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.
This conjecture was proved by Alon in 1990.
Theorem [Alon, 1990]: $P(n) \leq c n^{3 / 2} \frac{n!}{2^{n-1}}$.

Alon's proof

- $C(T)$: the number of directed Hamiltonian cycles of T.

Alon's proof

- $C(T)$: the number of directed Hamiltonian cycles of T.
- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.

Alon's proof

■ $C(T)$: the number of directed Hamiltonian cycles of T.

- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
$A_{T}=\left(a_{i j}\right)$: the adjacency matrix of T, where $a_{i j}=1$ if $i \rightarrow j$ and 0 otherwise.

Alon's proof

- $C(T)$: the number of directed Hamiltonian cycles of T.
- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
$A_{T}=\left(a_{i j}\right)$: the adjacency matrix of T, where $a_{i j}=1$ if $i \rightarrow j$ and 0 otherwise.

$$
F(T)=\operatorname{per}\left(A_{T}\right) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

Here r_{i} is i-th row sum of $A_{T} ; \sum_{i=1}^{n} r_{i}=\binom{n}{2}$.

A convex inequality

Lemma: For every two integers a, b satisfying
$b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

Proof: Let $f(x)=\frac{(x!)^{1 / x}}{((x+1)!)^{1 /(1+x)}}$. We need to show $f(a)<f(b-1)$. It suffices to show $f(x-1)<f(x)$.

$$
((x-1)!)^{1 /(x-1)}((x+1)!)^{1 /(1+x)}<(x!)^{2 / x} .
$$

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

Proof: Let $f(x)=\frac{(x!)^{1 / x}}{((x+1)!)^{1 /(1+x)}}$. We need to show $f(a)<f(b-1)$. It suffices to show $f(x-1)<f(x)$.

$$
((x-1)!)^{1 /(x-1)}((x+1)!)^{1 /(1+x)}<(x!)^{2 / x} .
$$

Simplifying it, we get $\left(\frac{x^{x}}{x!}\right)^{2}>\left(1+\frac{1}{x}\right)^{x(x-1)}$.

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

Proof: Let $f(x)=\frac{(x!)^{1 / x}}{((x+1)!)^{1 /(1+x)}}$. We need to show $f(a)<f(b-1)$. It suffices to show $f(x-1)<f(x)$.

$$
((x-1)!)^{1 /(x-1)}((x+1)!)^{1 /(1+x)}<(x!)^{2 / x} .
$$

Simplifying it, we get $\left(\frac{x^{x}}{x!}\right)^{2}>\left(1+\frac{1}{x}\right)^{x(x-1)}$. It can be proved using $x!>\left(\frac{x+1}{2}\right)^{x}$ for $x \geq 2$.

Proof of theorem

Observe that $\prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}$ achieves the maximum when all r_{i} 's are almost equal. We get

$$
F(T) \leq(1+o(1)) \frac{\sqrt{\pi}}{\sqrt{2} e} n^{3 / 2} \frac{(n-1)!}{2^{n}} .
$$

Proof of theorem

Observe that $\prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}$ achieves the maximum when all r_{i} 's are almost equal. We get

$$
F(T) \leq(1+o(1)) \frac{\sqrt{\pi}}{\sqrt{2} e} n^{3 / 2} \frac{(n-1)!}{2^{n}}
$$

Construct a new tournament T^{\prime} for T by adding a new vertex v, where the edges from v to T are oriented randomly and independently. Every Hamiltonian path in T can be extended to a Hamiltonian cycle in T^{\prime} with probability $\frac{1}{4}$. We have

$$
P(T) \leq \frac{1}{4} C\left(T^{\prime}\right)=O\left(n^{3 / 2} \frac{n!}{2^{n-1}}\right)
$$

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Theorem [Caro (1979), $\mathbf{W e i}(1981)] \alpha(G) \geq \sum_{v \in V} \frac{1}{d_{v}+1}$.

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Theorem [Caro (1979), Wei(1981)] $\alpha(G) \geq \sum_{v \in V} \frac{1}{d_{v}+1}$.
Proof: Pick a random permutation σ on V. Define

$$
I=\{v \in V: v w \in E \Rightarrow \sigma(v)<\sigma(w)\} .
$$

Then I is an independent set.

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Theorem [Caro (1979), Wei(1981)] $\alpha(G) \geq \sum_{v \in V} \frac{1}{d_{v}+1}$.
Proof: Pick a random permutation σ on V. Define

$$
I=\{v \in V: v w \in E \Rightarrow \sigma(v)<\sigma(w)\} .
$$

Then I is an independent set.
Let X_{v} be the indicator random variable for $v \in I$.

$$
\begin{aligned}
& \mathrm{E}\left(X_{v}\right)=\operatorname{Pr}(v \in I)=\frac{1}{d_{v}+1} . \\
& \alpha(G) \geq \mathrm{E}(|I|)=\sum_{v} \frac{1}{d_{v}+1} .
\end{aligned}
$$

Turán Theorem

Turán number $t(n, H)$: the maximum integer m such that there is a graph on n vertices containing no subgraph H.

Turán Theorem

Turán number $t(n, H)$: the maximum integer m such that there is a graph on n vertices containing no subgraph H.
Turán Theorem: For $n=k m+r(0 \leq r<k)$,

$$
t\left(n, K_{k+1}\right)=m^{2}\binom{k}{2}+r m(k-1)+\binom{r}{2} .
$$

The equality holds if and only if G is the complete k-partite graph with equitable partitions, denoted by $G_{n, k}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{2}+(m-r)\binom{q}{2}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{2}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{2}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{2}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.
The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{2}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.
The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible. Since each clique contributes one, we have

$$
\sum_{v} \frac{1}{d_{v}+1} \geq k
$$

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{2}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.
The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible. Since each clique contributes one, we have

$$
\sum_{v} \frac{1}{d_{v}+1} \geq k
$$

When the equality holds, I is a constant. G can not contain an induced P_{2}. Therefore $G=\bar{G}_{n, k}$.

History

Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.

History

Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.
Turán (1941):
$t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2}$.

History

- Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.

Turán (1941):
$t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2}$.
Erdös-Simonovits-Stone (1966): If $\chi(H)>2$, then $t(n, H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$.

History

■ Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.
■ Turán (1941):

$$
t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

■ Erdös-Simonovits-Stone (1966): If $\chi(H)>2$, then $t(n, H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$.
■ Kövári-Sós-Turán (1954): For $2 \leq r \leq s$,

$$
t\left(n, K_{r, s}\right)<c s^{1 / r} n^{2-1 / r}+O(n) .
$$

History

- Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.

■ Turán (1941):

$$
t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

■ Erdös-Simonovits-Stone (1966): If $\chi(H)>2$, then $t(n, H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$.
■ Kövári-Sós-Turán (1954): For $2 \leq r \leq s$, $t\left(n, K_{r, s}\right)<c s^{1 / r} n^{2-1 / r}+O(n)$.
■ Erdős-Bondy-Simonovits $(1963,1974)$: $t\left(n, C_{2 k}\right) \leq c k n^{1+1 / k}$.

Open conjectures

Conjecture: for $r \geq 4, t\left(n, K_{r, r}\right)>c n^{2-1 / r}$.

Open conjectures

Conjecture: for $r \geq 4, t\left(n, K_{r, r}\right)>c n^{2-1 / r}$.
Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H)=O\left(n^{2-1 / r}\right)$.

Open conjectures

■ Conjecture: for $r \geq 4, t\left(n, K_{r, r}\right)>c n^{2-1 / r}$.

- Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H)=O\left(n^{2-1 / r}\right)$.
- Conjecture: $t\left(n, C_{2 k}\right) \geq c n^{1+1 / k}$ for $k=4$ and $k \geq 6$.

Open conjectures

■ Conjecture: for $r \geq 4, t\left(n, K_{r, r}\right)>c n^{2-1 / r}$.

- Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H)=O\left(n^{2-1 / r}\right)$.
- Conjecture: $t\left(n, C_{2 k}\right) \geq c n^{1+1 / k}$ for $k=4$ and $k \geq 6$.
- Conjecture ($\$ 250$ for proof and $\$ 100$ for disproof:) Suppose H is a bipartite graph. Prove or disprove that $t(n, H)=O\left(n^{3 / 2}\right)$ if and only if H does not contain a subgraph each vertex of which has degree >2.

