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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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Topic Course on Probabilistic Methods (week 14) Linyuan Lu, University of South Carolina – 3 / 20

■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)
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Entropy

■ Motivation
■ Entropy
■ Properties
■ Applications
■ Shannon’s theorem
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Estimate binary coefficients: For fixed α ∈ (0, 1),

(

n

αn

)

=
n!

(αn)!((1− α)n)!

≈
√
2πnnn

en√
2παn(αn)αn

eαn

√

2π(1− α)n ((1−α)n)(1−α)n

e(1−α)n

=
1

√

2πα(1− α)n

(

α−α(1− α)−(1−α)
)n

= 2(1+o(1))H(α)n,

where H(α) = −α log2 α− (1− α) log2(1− α).
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(

α−α(1− α)−(1−α)
)n

= 2(1+o(1))H(α)n,

where H(α) = −α log2 α− (1− α) log2(1− α).

For α < 1
2 , we also have

∑

i<αn

(

n
i

)

= 2(1+o(1))H(α)n.
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Let X be a random variable taking values in some range S.
The binary entropy of X, denoted by H(X) is defined by

H(X) =
∑

x∈S
Pr(X = x) log2

1

Pr(X = x)
.
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Let X be a random variable taking values in some range S.
The binary entropy of X, denoted by H(X) is defined by

H(X) =
∑

x∈S
Pr(X = x) log2

1

Pr(X = x)
.

Example 1: If X = 0 with probability α and X = 1 with
probability 1− α, then

H(X) = −α log2 α− (1− α) log2(1− α) = H(α).
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Let X be a random variable taking values in some range S.
The binary entropy of X, denoted by H(X) is defined by

H(X) =
∑

x∈S
Pr(X = x) log2

1

Pr(X = x)
.

Example 1: If X = 0 with probability α and X = 1 with
probability 1− α, then

H(X) = −α log2 α− (1− α) log2(1− α) = H(α).

Example 2: If X takes n values with equal probability, then

H(X) = log2 n.
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Property 1: Among all random variables taking values in S,
the variable with uniform distribution has the largest entropy.
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Property 1: Among all random variables taking values in S,
the variable with uniform distribution has the largest entropy.

Proof: Note that z log2 z is concave upward. We have

H(X) =
∑

x∈S
Pr(X = x) log2

1

Pr(X = x)

≤ log2
∑

x∈S
Pr(X = x)

1

Pr(X = x)

≤ log2 |S|.

The equality holds if and only if Pr(X = x) = 1
|S| for any

x ∈ S.
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Property 2: H(X, Y ) ≥ H(X).
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Property 2: H(X, Y ) ≥ H(X).

Proof:

H(X, Y ) =
∑

x∈S,y∈T
Pr(X = x, Y = y) log2

1

Pr(X = x, Y = y)

≥
∑

x∈S,y∈T
Pr(X = x, Y = y) log2

1

Pr(X = x)

=
∑

x∈S
Pr(X = x) log2

1

Pr(X = x)

= H(X).
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Property 3: H(X, Y ) ≤ H(X) +H(Y ).
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Property 3: H(X, Y ) ≤ H(X) +H(Y ).

Proof:

H(X) +H(Y )−H(X, Y )

=
∑

i∈S

∑

j∈T
Pr(X = i, Y = j) log2

Pr(X = i, Y = j)

Pr(X = i)Pr(Y = j)

=
∑

i∈S

∑

j∈T
Pr(X = i)Pr(Y = j)f(zij),

where f(z) = z log2 z and zij =
Pr(X=i,Y=j)

Pr(X=i)Pr(Y=j) . By the

convexity inequality of f(z), we have

H(X) +H(Y )−H(X, Y ) ≥ f(1) = 0. �
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The conditional entropy of X given Y is

H(X|Y ) = H(X, Y )−H(Y )

=
∑

i∈S

∑

j∈T
Pr(X = i, Y = j) log2

Pr(Y = j)

Pr(X = i, Y = j)
.
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The conditional entropy of X given Y is

H(X|Y ) = H(X, Y )−H(Y )

=
∑

i∈S

∑

j∈T
Pr(X = i, Y = j) log2

Pr(Y = j)

Pr(X = i, Y = j)
.

By the definition, we have

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).
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The conditional entropy of X given Y is

H(X|Y ) = H(X, Y )−H(Y )

=
∑

i∈S

∑

j∈T
Pr(X = i, Y = j) log2

Pr(Y = j)

Pr(X = i, Y = j)
.

By the definition, we have

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).

Mutual information:

I(X;Y ) = H(X) +H(Y )−H(X, Y ).
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Property 4: H(X|Y, Z) ≤ H(X|Y ).
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Property 4: H(X|Y, Z) ≤ H(X|Y ).

Proof : H(X|Y )−H(X|Y, Z)
=

∑

i∈S

∑

j∈T

∑

k∈U
Pr(X = i, Y = j, Z = k)

log2
Pr(Y = j)Pr(X = i, Y = j, Z = k)

Pr(X = i, Y = j)Pr(Y = j, Z = k)

=
∑

i∈S

∑

j∈T

∑

k∈U

Pr(X = i, Y = j)Pr(Y = j, Z = k)

Pr(Y = j)
f(zirk)

≤ f(1) = 0.

Here f(z) = z log z and zijk =
Pr(Y=j)Pr(X=i,Y=j,Z=k)
Pr(X=i,Y=j)Pr(Y=j,Z=k) . �
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Proposition: Let X = (X1, X2, . . . , Xn) be a random
variable taking values in the set S = S1 × · · ·Sn where each
of the coordinates Xi of X is a random variable taking
values in Si. Then

H(X) ≤
n

∑

i=1

H(Xi).
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Proposition: Let X = (X1, X2, . . . , Xn) be a random
variable taking values in the set S = S1 × · · ·Sn where each
of the coordinates Xi of X is a random variable taking
values in Si. Then

H(X) ≤
n

∑

i=1

H(Xi).

Corollary: Let F be a family of subsets of [n] and let pi
denote the fraction of sets that contain i. Then

|F| ≤ 2
∑

n

i=1 H(pi).
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For any subset I ⊂ [n], let X(I) denote the random variable
(Xi)i∈I .
Proposition [Shearer 1986]: If G is a family of subsets of
[n] and each i ∈ [n] belongs to at least k members of G then

kH(X) ≤
∑

G∈G
H(X(G)).
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For any subset I ⊂ [n], let X(I) denote the random variable
(Xi)i∈I .
Proposition [Shearer 1986]: If G is a family of subsets of
[n] and each i ∈ [n] belongs to at least k members of G then

kH(X) ≤
∑

G∈G
H(X(G)).

Proof: We allow G to be multisets. Now induction on k.
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For any subset I ⊂ [n], let X(I) denote the random variable
(Xi)i∈I .
Proposition [Shearer 1986]: If G is a family of subsets of
[n] and each i ∈ [n] belongs to at least k members of G then

kH(X) ≤
∑

G∈G
H(X(G)).

Proof: We allow G to be multisets. Now induction on k.

For k = 1, shrink the sets in G to obtain a family G ′ whose
members forms a partition of [n].

∑

G∈G
H(X(G)) ≥

∑

G′∈G′

H(X(G′)) ≥ H(X).
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For k ≥ 2, if [n] ∈ G, then G \ {[n]} covers each point at
least k − 1. By inductive hypothesis,

(k − 1)H(X) ≤
∑

G∈G\{[n]}
H(X(G)).

It follows
∑

G∈G
H(X(G)) = H(X([n])) +

∑

G∈G\{[n]}
H(X(G)) ≥ kH(X).

In general, we will replace a pair of G and G′ by G ∩G′ and
G ∪G′ first until we get a [n]. We claim

H(X(G)) +H(X(G′)) ≥ H(X(G ∪G′)) +H(X(G ∩G′)).



continue
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Recall Property IV:

H(X ′|Y, Z) ≤ H(X ′|Y ).

This is equivalent to

H(X ′, Y, Z) +H(Y ) ≤ H(X ′, Y ) +H(Y, Z).
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Recall Property IV:

H(X ′|Y, Z) ≤ H(X ′|Y ).

This is equivalent to

H(X ′, Y, Z) +H(Y ) ≤ H(X ′, Y ) +H(Y, Z).

Let X = X(G \G′), Y = X(G ∩G′), and Z = X(G′ \G).
Note that (X ′, Y, Z) = X(G ∪G′), (X ′, Y ) = X(G), and
(Y, Z) = X(G′). We get

H(X(G ∪G′)) +H(X(G ∩G′)) ≤ H(X(G)) +H(X(G′)).

This finishes the proof of claim and the inductive step. �
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Corollary: Let F be a family of vectors in S1 × · · · , Sn and
G := {G1, G2, . . . , Gm} be a family of subsets of [n] such
that each i ∈ [n] belongs to at least k members of G. For
1 ≤ i ≤ m, let Fi be the set of all projections of the
members of F on Gi. Then

|F|k ≤
m
∏

i=1

|Fi|.
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Corollary: Let F be a family of vectors in S1 × · · · , Sn and
G := {G1, G2, . . . , Gm} be a family of subsets of [n] such
that each i ∈ [n] belongs to at least k members of G. For
1 ≤ i ≤ m, let Fi be the set of all projections of the
members of F on Gi. Then

|F|k ≤
m
∏

i=1

|Fi|.

Proof: Let X = (X1, . . . , Xn) be the uniform random
variable taking values in F . We have

kH(X) ≤
m
∑

i=1

H(X(Gi)).

But H(X) = log2 |F | and H(X(Gi)) ≤ log2 |Fi|, implying
the desired result. �
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Theorem [Loomis, Whitney, 1949]: Let B be a
measurable body in the n-dimensional Euclidean space, let
Vol(B) denote its volume, and let Voli(B) denote the
(n− 1)-dimensional volume of the projection of B on the
hyperplane orthogonal to i-th axis. Then

(Vol(B))n−1 ≤
n
∏

i=1

Vol(Bi).
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Theorem [Loomis, Whitney, 1949]: Let B be a
measurable body in the n-dimensional Euclidean space, let
Vol(B) denote its volume, and let Voli(B) denote the
(n− 1)-dimensional volume of the projection of B on the
hyperplane orthogonal to i-th axis. Then

(Vol(B))n−1 ≤
n
∏

i=1

Vol(Bi).

Proof: Approximate the volume of a body by the number of
standard grid points if the grid is fine enough. The apply the
previous corollary. �
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The entropy H(X) is also known as Shannon’s entropy.
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The entropy H(X) is also known as Shannon’s entropy.

■ A: a set of alphabet.
■ A: a probability distribution over A.

To encode a file that contain n|A| symbols, the number of
bits are required so that the file can be encoded without loss
of information is roughly n log2 |A|.



Shannon’s theorem

Topic Course on Probabilistic Methods (week 14) Linyuan Lu, University of South Carolina – 18 / 20

The entropy H(X) is also known as Shannon’s entropy.

■ A: a set of alphabet.
■ A: a probability distribution over A.

To encode a file that contain n|A| symbols, the number of
bits are required so that the file can be encoded without loss
of information is roughly n log2 |A|.
Now we allow an error δ. We seek to encode only files that
fall in a set B ⊂ An with Pr(B) ≥ 1− δ. Then then the
number of bits needed is

Hδ(A
n) := inf

B⊂An,Pr(B)≥1−δ
log2 |B|.
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The entropy H(X) is also known as Shannon’s entropy.

■ A: a set of alphabet.
■ A: a probability distribution over A.

To encode a file that contain n|A| symbols, the number of
bits are required so that the file can be encoded without loss
of information is roughly n log2 |A|.
Now we allow an error δ. We seek to encode only files that
fall in a set B ⊂ An with Pr(B) ≥ 1− δ. Then then the
number of bits needed is

Hδ(A
n) := inf

B⊂An,Pr(B)≥1−δ
log2 |B|.

Shannon’s theorem: ∀δ, limn→∞
1
n
Hδ(A

n) = H(A).
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Proof: Apply the law of large numbers to the random
variable log2 p(a): for any ǫ > 0 and a sequence
a1a2, . . . , an ∈ An,

lim
n→∞

Pr

(
∣

∣

∣

∣

1

n

n
∑

i=1

log2 p(ai)− E(log2 p(a))

∣

∣

∣

∣

> ǫ

)

= 0.
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Proof: Apply the law of large numbers to the random
variable log2 p(a): for any ǫ > 0 and a sequence
a1a2, . . . , an ∈ An,

lim
n→∞

Pr

(
∣

∣

∣

∣

1

n

n
∑

i=1

log2 p(ai)− E(log2 p(a))

∣

∣

∣

∣

> ǫ

)

= 0.

With probability 1− o(1), a1, . . . , an satisfies

2−n(H(A)+ǫ) ≤ p(a1, . . . , pn) ≤ 2−n(H(A)−ǫ).
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Proof: Apply the law of large numbers to the random
variable log2 p(a): for any ǫ > 0 and a sequence
a1a2, . . . , an ∈ An,

lim
n→∞

Pr

(
∣

∣

∣

∣

1

n

n
∑

i=1

log2 p(ai)− E(log2 p(a))

∣

∣

∣

∣

> ǫ

)

= 0.

With probability 1− o(1), a1, . . . , an satisfies

2−n(H(A)+ǫ) ≤ p(a1, . . . , pn) ≤ 2−n(H(A)−ǫ).

Let An,ǫ be the above event. Note that

1 ≥ p(AN,ǫ) ≥ |An,ǫ|2−n(H(A)+ǫ).

We get |An,ǫ| ≤ 2n(H(A)+ǫ).
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Thus Hδ(An) ≤ log2 |An,ǫ| ≤ n(H(A) + ǫ).

It follows that

lim
n→∞

lim sup
1

n
Hδ(An) ≤ H(A).
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Thus Hδ(An) ≤ log2 |An,ǫ| ≤ n(H(A) + ǫ).

It follows that

lim
n→∞

lim sup
1

n
Hδ(An) ≤ H(A).

Now we prove the lower bound. Let Bn,δ be the minimizer
for Hδ; that is, p(Bn,δ) ≥ 1− δ and Hδ(An) = log2 |Bn,δ|.
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Thus Hδ(An) ≤ log2 |An,ǫ| ≤ n(H(A) + ǫ).

It follows that

lim
n→∞

lim sup
1

n
Hδ(An) ≤ H(A).

Now we prove the lower bound. Let Bn,δ be the minimizer
for Hδ; that is, p(Bn,δ) ≥ 1− δ and Hδ(An) = log2 |Bn,δ|.
For sufficiently large n, we have

p(Bn,δ ∩ An,δ) ≥ p(Bn,δ)− δ ≥ 1− 2δ.

Then
|Bn,δ ∩ An,δ| ≥ (1− 2δ)2n(H(A)−ǫ).

We have
1

n
Hδ(An) ≥ 1

n
log2(1− 2δ) +H(A)− ǫ. �
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