Topic Course on Probabilistic Methods (Week 14)

 Entropy

 Entropy}

> Linyuan Lu

University of South Carolina

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Entropy

- Motivation
- Entropy
- Properties
- Applications
- Shannon's theorem

Motivation

Estimate binary coefficients: For fixed $\alpha \in(0,1)$,

$$
\begin{aligned}
\binom{n}{\alpha n} & =\frac{n!}{(\alpha n)!((1-\alpha) n)!} \\
& \approx \frac{\sqrt{2 \pi n} \frac{n^{n}}{e^{n}}}{\sqrt{2 \pi \alpha n} \frac{(\alpha n)^{\alpha n}}{e^{\alpha n}} \sqrt{2 \pi(1-\alpha) n} \frac{((1-\alpha) n)^{(1-\alpha) n}}{e^{(1-\alpha) n}}} \\
& =\frac{1}{\sqrt{2 \pi \alpha(1-\alpha) n}}\left(\alpha^{-\alpha}(1-\alpha)^{-(1-\alpha)}\right)^{n} \\
& =2^{(1+o(1)) H(\alpha) n},
\end{aligned}
$$

where $H(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)$.

Motivation

Estimate binary coefficients: For fixed $\alpha \in(0,1)$,

$$
\begin{aligned}
\binom{n}{\alpha n} & =\frac{n!}{(\alpha n)!((1-\alpha) n)!} \\
& \approx \frac{\sqrt{2 \pi n} \frac{n^{n}}{e^{n}}}{\sqrt{2 \pi \alpha n} \frac{(\alpha n)^{\alpha n}}{e^{\alpha n}} \sqrt{2 \pi(1-\alpha) n} \frac{((1-\alpha) n)^{(1-\alpha) n}}{e^{(1-\alpha) n}}} \\
& =\frac{1}{\sqrt{2 \pi \alpha(1-\alpha) n}}\left(\alpha^{-\alpha}(1-\alpha)^{-(1-\alpha)}\right)^{n} \\
& =2^{(1+o(1)) H(\alpha) n},
\end{aligned}
$$

where $H(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)$.
For $\alpha<\frac{1}{2}$, we also have $\sum_{i<\alpha n}\binom{n}{i}=2^{(1+o(1)) H(\alpha) n}$.

Entropy

Let X be a random variable taking values in some range S. The binary entropy of X, denoted by $H(X)$ is defined by

$$
H(X)=\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \frac{1}{\operatorname{Pr}(X=x)}
$$

Entropy

Let X be a random variable taking values in some range S. The binary entropy of X, denoted by $H(X)$ is defined by

$$
H(X)=\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \frac{1}{\operatorname{Pr}(X=x)}
$$

Example 1: If $X=0$ with probability α and $X=1$ with probability $1-\alpha$, then

$$
H(X)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)=H(\alpha)
$$

Entropy

Let X be a random variable taking values in some range S. The binary entropy of X, denoted by $H(X)$ is defined by

$$
H(X)=\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \frac{1}{\operatorname{Pr}(X=x)}
$$

Example 1: If $X=0$ with probability α and $X=1$ with probability $1-\alpha$, then

$$
H(X)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)=H(\alpha) .
$$

Example 2: If X takes n values with equal probability, then

$$
H(X)=\log _{2} n
$$

Property I

Property 1: Among all random variables taking values in S, the variable with uniform distribution has the largest entropy.

Property I

Property 1: Among all random variables taking values in S, the variable with uniform distribution has the largest entropy.
Proof: Note that $z \log _{2} z$ is concave upward. We have

$$
\begin{aligned}
H(X) & =\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \frac{1}{\operatorname{Pr}(X=x)} \\
& \leq \log _{2} \sum_{x \in S} \operatorname{Pr}(X=x) \frac{1}{\operatorname{Pr}(X=x)} \\
& \leq \log _{2}|S| .
\end{aligned}
$$

The equality holds if and only if $\operatorname{Pr}(X=x)=\frac{1}{|S|}$ for any $x \in S$.

Property II

Property 2: $H(X, Y) \geq H(X)$.

Property II

Property 2: $H(X, Y) \geq H(X)$.

Proof:

$$
\begin{aligned}
H(X, Y) & =\sum_{x \in S, y \in T} \operatorname{Pr}(X=x, Y=y) \log _{2} \frac{1}{\operatorname{Pr}(X=x, Y=y)} \\
& \geq \sum_{x \in S, y \in T} \operatorname{Pr}(X=x, Y=y) \log _{2} \frac{1}{\operatorname{Pr}(X=x)} \\
& =\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \frac{1}{\operatorname{Pr}(X=x)} \\
& =H(X) .
\end{aligned}
$$

Property III

Property 3: $H(X, Y) \leq H(X)+H(Y)$.

Property III

Property 3: $H(X, Y) \leq H(X)+H(Y)$.

Proof:

$$
\begin{aligned}
H & (X)+H(Y)-H(X, Y) \\
& =\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i, Y=j) \log _{2} \frac{\operatorname{Pr}(X=i, Y=j)}{\operatorname{Pr}(X=i) \operatorname{Pr}(Y=j)} \\
& =\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i) \operatorname{Pr}(Y=j) f\left(z_{i j}\right),
\end{aligned}
$$

where $f(z)=z \log _{2} z$ and $z_{i j}=\frac{\operatorname{Pr}(X=i, Y=j)}{\operatorname{Pr}(X=i) \operatorname{Pr}(Y=j)}$. By the convexity inequality of $f(z)$, we have

$$
H(X)+H(Y)-H(X, Y) \geq f(1)=0
$$

Conditional entropy

The conditional entropy of X given Y is

$$
\begin{aligned}
H(X \mid Y) & =H(X, Y)-H(Y) \\
& =\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i, Y=j) \log _{2} \frac{\operatorname{Pr}(Y=j)}{\operatorname{Pr}(X=i, Y=j)} .
\end{aligned}
$$

Conditional entropy

The conditional entropy of X given Y is

$$
\begin{aligned}
H(X \mid Y) & =H(X, Y)-H(Y) \\
& =\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i, Y=j) \log _{2} \frac{\operatorname{Pr}(Y=j)}{\operatorname{Pr}(X=i, Y=j)} .
\end{aligned}
$$

By the definition, we have

$$
H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)
$$

Conditional entropy

The conditional entropy of X given Y is

$$
\begin{aligned}
H(X \mid Y) & =H(X, Y)-H(Y) \\
& =\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i, Y=j) \log _{2} \frac{\operatorname{Pr}(Y=j)}{\operatorname{Pr}(X=i, Y=j)} .
\end{aligned}
$$

By the definition, we have

$$
H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)
$$

Mutual information:

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

Property IV

Property 4: $H(X \mid Y, Z) \leq H(X \mid Y)$.

Property IV

Property 4: $H(X \mid Y, Z) \leq H(X \mid Y)$.
Proof : $\quad H(X \mid Y)-H(X \mid Y, Z)$
$=\sum_{i \in S} \sum_{j \in T} \sum_{k \in U} \operatorname{Pr}(X=i, Y=j, Z=k)$

$$
\log _{2} \frac{\operatorname{Pr}(Y=j) \operatorname{Pr}(X=i, Y=j, Z=k)}{\operatorname{Pr}(X=i, Y=j) \operatorname{Pr}(Y=j, Z=k)}
$$

$=\sum_{i \in S} \sum_{j \in T} \sum_{k \in U} \frac{\operatorname{Pr}(X=i, Y=j) \operatorname{Pr}(Y=j, Z=k)}{\operatorname{Pr}(Y=j)} f\left(z_{i r k}\right)$
$\leq f(1)=0$.
Here $f(z)=z \log z$ and $z_{i j k}=\frac{\operatorname{Pr}(Y=j) \operatorname{Pr}(X=i, Y=j, Z=k)}{\operatorname{Pr}(X=i, Y=j) \operatorname{Pr}(Y=j, Z=k)}$. \square

Applications in set theory

Proposition: Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random variable taking values in the set $S=S_{1} \times \cdots S_{n}$ where each of the coordinates X_{i} of X is a random variable taking values in S_{i}. Then

$$
H(X) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

Applications in set theory

Proposition: Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random variable taking values in the set $S=S_{1} \times \cdots S_{n}$ where each of the coordinates X_{i} of X is a random variable taking values in S_{i}. Then

$$
H(X) \leq \sum_{i=1}^{n} H\left(X_{i}\right) .
$$

Corollary: Let \mathcal{F} be a family of subsets of $[n]$ and let p_{i} denote the fraction of sets that contain i. Then

$$
|\mathcal{F}| \leq 2^{\sum_{i=1}^{n} H\left(p_{i}\right)} .
$$

Extension

For any subset $I \subset[n]$, let $X(I)$ denote the random variable $\left(X_{i}\right)_{i \in I}$.
Proposition [Shearer 1986]: If \mathcal{G} is a family of subsets of $[n]$ and each $i \in[n]$ belongs to at least k members of \mathcal{G} then

$$
k H(X) \leq \sum_{G \in \mathcal{G}} H(X(G))
$$

Extension

For any subset $I \subset[n]$, let $X(I)$ denote the random variable $\left(X_{i}\right)_{i \in I}$.
Proposition [Shearer 1986]: If \mathcal{G} is a family of subsets of $[n]$ and each $i \in[n]$ belongs to at least k members of \mathcal{G} then

$$
k H(X) \leq \sum_{G \in \mathcal{G}} H(X(G))
$$

Proof: We allow \mathcal{G} to be multisets. Now induction on k.

Extension

For any subset $I \subset[n]$, let $X(I)$ denote the random variable $\left(X_{i}\right)_{i \in I}$.
Proposition [Shearer 1986]: If \mathcal{G} is a family of subsets of $[n]$ and each $i \in[n]$ belongs to at least k members of \mathcal{G} then

$$
k H(X) \leq \sum_{G \in \mathcal{G}} H(X(G))
$$

Proof: We allow \mathcal{G} to be multisets. Now induction on k.
For $k=1$, shrink the sets in \mathcal{G} to obtain a family \mathcal{G}^{\prime} whose members forms a partition of $[n]$.

$$
\sum_{G \in \mathcal{G}} H(X(G)) \geq \sum_{G^{\prime} \in \mathcal{G}^{\prime}} H\left(X\left(G^{\prime}\right)\right) \geq H(X) .
$$

continue

For $k \geq 2$, if $[n] \in \mathcal{G}$, then $\mathcal{G} \backslash\{[n]\}$ covers each point at least $k-1$. By inductive hypothesis,

$$
(k-1) H(X) \leq \sum_{G \in \mathcal{G} \backslash\{[n]\}} H(X(G)) .
$$

It follows
$\sum_{G \in \mathcal{G}} H(X(G))=H(X([n]))+\sum_{G \in \mathcal{G} \backslash\{[n]\}} H(X(G)) \geq k H(X)$. In general, we will replace a pair of G and G^{\prime} by $G \cap G^{\prime}$ and $G \cup G^{\prime}$ first until we get a $[n]$. We claim

$$
H(X(G))+H\left(X\left(G^{\prime}\right)\right) \geq H\left(X\left(G \cup G^{\prime}\right)\right)+H\left(X\left(G \cap G^{\prime}\right)\right)
$$

continue

Recall Property IV:

$$
H\left(X^{\prime} \mid Y, Z\right) \leq H\left(X^{\prime} \mid Y\right)
$$

This is equivalent to

$$
H\left(X^{\prime}, Y, Z\right)+H(Y) \leq H\left(X^{\prime}, Y\right)+H(Y, Z)
$$

continue

Recall Property IV:

$$
H\left(X^{\prime} \mid Y, Z\right) \leq H\left(X^{\prime} \mid Y\right)
$$

This is equivalent to

$$
H\left(X^{\prime}, Y, Z\right)+H(Y) \leq H\left(X^{\prime}, Y\right)+H(Y, Z)
$$

Let $X=X\left(G \backslash G^{\prime}\right), Y=X\left(G \cap G^{\prime}\right)$, and $Z=X\left(G^{\prime} \backslash G\right)$. Note that $\left(X^{\prime}, Y, Z\right)=X\left(G \cup G^{\prime}\right),\left(X^{\prime}, Y\right)=X(G)$, and $(Y, Z)=X\left(G^{\prime}\right)$. We get
$H\left(X\left(G \cup G^{\prime}\right)\right)+H\left(X\left(G \cap G^{\prime}\right)\right) \leq H(X(G))+H\left(X\left(G^{\prime}\right)\right)$.
This finishes the proof of claim and the inductive step. \square

Application I

Corollary: Let \mathcal{F} be a family of vectors in $S_{1} \times \cdots, S_{n}$ and $\mathcal{G}:=\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}$ be a family of subsets of $[n]$ such that each $i \in[n]$ belongs to at least k members of \mathcal{G}. For $1 \leq i \leq m$, let \mathcal{F}_{i} be the set of all projections of the members of \mathcal{F} on G_{i}. Then

$$
|\mathcal{F}|^{k} \leq \prod_{i=1}^{m}\left|\mathcal{F}_{i}\right|
$$

Application I

Corollary: Let \mathcal{F} be a family of vectors in $S_{1} \times \cdots, S_{n}$ and $\mathcal{G}:=\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}$ be a family of subsets of $[n]$ such that each $i \in[n]$ belongs to at least k members of \mathcal{G}. For $1 \leq i \leq m$, let \mathcal{F}_{i} be the set of all projections of the members of \mathcal{F} on G_{i}. Then

$$
|\mathcal{F}|^{k} \leq \prod_{i=1}^{m}\left|\mathcal{F}_{i}\right|
$$

Proof: Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be the uniform random variable taking values in \mathcal{F}. We have

$$
k H(X) \leq \sum_{i=1}^{m} H\left(X\left(G_{i}\right)\right)
$$

But $H(X)=\log _{2}|F|$ and $H\left(X\left(G_{i}\right)\right) \leq \log _{2}\left|F_{i}\right|$, implying the desired result.

Corollary

Theorem [Loomis, Whitney, 1949]: Let B be a

 measurable body in the n-dimensional Euclidean space, let $\operatorname{Vol}(B)$ denote its volume, and let $\operatorname{Vol}_{i}(B)$ denote the ($n-1$)-dimensional volume of the projection of B on the hyperplane orthogonal to i-th axis. Then$$
(\operatorname{Vol}(B))^{n-1} \leq \prod_{i=1}^{n} \operatorname{Vol}\left(B_{i}\right)
$$

Corollary

Theorem [Loomis, Whitney, 1949]: Let B be a

 measurable body in the n-dimensional Euclidean space, let $\mathrm{Vol}(B)$ denote its volume, and let $\operatorname{Vol}_{i}(B)$ denote the ($n-1$)-dimensional volume of the projection of B on the hyperplane orthogonal to i-th axis. Then$$
(\operatorname{Vol}(B))^{n-1} \leq \prod_{i=1}^{n} \operatorname{Vol}\left(B_{i}\right)
$$

Proof: Approximate the volume of a body by the number of standard grid points if the grid is fine enough. The apply the previous corollary.

Shannon's theorem

The entropy $H(X)$ is also known as Shannon's entropy.

Shannon's theorem

The entropy $H(X)$ is also known as Shannon's entropy.

- A : a set of alphabet.
- \mathcal{A} : a probability distribution over A.

Shannon's theorem

The entropy $H(X)$ is also known as Shannon's entropy.

- A : a set of alphabet.
- \mathcal{A} : a probability distribution over A.

To encode a file that contain $n|A|$ symbols, the number of bits are required so that the file can be encoded without loss of information is roughly $n \log _{2}|A|$.

Shannon's theorem

The entropy $H(X)$ is also known as Shannon's entropy.

- A : a set of alphabet.
- \mathcal{A} : a probability distribution over A.

To encode a file that contain $n|A|$ symbols, the number of bits are required so that the file can be encoded without loss of information is roughly $n \log _{2}|A|$.
Now we allow an error δ. We seek to encode only files that fall in a set $B \subset A^{n}$ with $\operatorname{Pr}(B) \geq 1-\delta$. Then then the number of bits needed is

$$
H_{\delta}\left(A^{n}\right):=\inf _{B \subset A^{n}, \operatorname{Pr}(B) \geq 1-\delta} \log _{2}|B| .
$$

Shannon's theorem

The entropy $H(X)$ is also known as Shannon's entropy.

- A : a set of alphabet.
- \mathcal{A} : a probability distribution over A.

To encode a file that contain $n|A|$ symbols, the number of bits are required so that the file can be encoded without loss of information is roughly $n \log _{2}|A|$.
Now we allow an error δ. We seek to encode only files that fall in a set $B \subset A^{n}$ with $\operatorname{Pr}(B) \geq 1-\delta$. Then then the number of bits needed is

$$
H_{\delta}\left(A^{n}\right):=\inf _{B \subset A^{n}, \operatorname{Pr}(B) \geq 1-\delta} \log _{2}|B| .
$$

Shannon's theorem: $\forall \delta, \lim _{n \rightarrow \infty} \frac{1}{n} H_{\delta}\left(A^{n}\right)=H(\mathcal{A})$.

Proof

Proof: Apply the law of large numbers to the random

 variable $\log _{2} p(a)$: for any $\epsilon>0$ and a sequence $a_{1} a_{2}, \ldots, a_{n} \in A^{n}$,$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(a_{i}\right)-\mathrm{E}\left(\log _{2} p(a)\right)\right|>\epsilon\right)=0
$$

Proof

Proof: Apply the law of large numbers to the random variable $\log _{2} p(a)$: for any $\epsilon>0$ and a sequence $a_{1} a_{2}, \ldots, a_{n} \in A^{n}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(a_{i}\right)-\mathrm{E}\left(\log _{2} p(a)\right)\right|>\epsilon\right)=0
$$

With probability $1-o(1), a_{1}, \ldots, a_{n}$ satisfies

$$
2^{-n(H(\mathcal{A})+\epsilon)} \leq p\left(a_{1}, \ldots, p_{n}\right) \leq 2^{-n(H(\mathcal{A})-\epsilon)} .
$$

Proof

Proof: Apply the law of large numbers to the random variable $\log _{2} p(a)$: for any $\epsilon>0$ and a sequence $a_{1} a_{2}, \ldots, a_{n} \in A^{n}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(a_{i}\right)-\mathrm{E}\left(\log _{2} p(a)\right)\right|>\epsilon\right)=0
$$

With probability $1-o(1), a_{1}, \ldots, a_{n}$ satisfies

$$
2^{-n(H(\mathcal{A})+\epsilon)} \leq p\left(a_{1}, \ldots, p_{n}\right) \leq 2^{-n(H(\mathcal{A})-\epsilon)} .
$$

Let $A_{n, \epsilon}$ be the above event. Note that

$$
1 \geq p\left(A_{N, \epsilon}\right) \geq\left|A_{n, \epsilon}\right| 2^{-n(H(\mathcal{A})+\epsilon)}
$$

We get $\left|A_{n, \epsilon}\right| \leq 2^{n(H(\mathcal{A})+\epsilon)}$.

continue

Thus

$$
H_{\delta}\left(\mathcal{A}^{n}\right) \leq \log _{2}\left|A_{n, \epsilon}\right| \leq n(H(\mathcal{A})+\epsilon) .
$$

It follows that

$$
\lim _{n \rightarrow \infty} \lim \sup \frac{1}{n} H_{\delta}\left(\mathcal{A}^{n}\right) \leq H(\mathcal{A})
$$

continue

Thus

$$
H_{\delta}\left(\mathcal{A}^{n}\right) \leq \log _{2}\left|A_{n, \epsilon}\right| \leq n(H(\mathcal{A})+\epsilon) .
$$

It follows that

$$
\lim _{n \rightarrow \infty} \lim \sup \frac{1}{n} H_{\delta}\left(\mathcal{A}^{n}\right) \leq H(\mathcal{A})
$$

Now we prove the lower bound. Let $B_{n, \delta}$ be the minimizer for H_{δ}; that is, $p\left(B_{n, \delta}\right) \geq 1-\delta$ and $H_{\delta}\left(\mathcal{A}^{n}\right)=\log _{2}\left|B_{n, \delta}\right|$.

continue

Thus

$$
H_{\delta}\left(\mathcal{A}^{n}\right) \leq \log _{2}\left|A_{n, \epsilon}\right| \leq n(H(\mathcal{A})+\epsilon)
$$

It follows that

$$
\lim _{n \rightarrow \infty} \lim \sup \frac{1}{n} H_{\delta}\left(\mathcal{A}^{n}\right) \leq H(\mathcal{A})
$$

Now we prove the lower bound. Let $B_{n, \delta}$ be the minimizer for H_{δ}; that is, $p\left(B_{n, \delta}\right) \geq 1-\delta$ and $H_{\delta}\left(\mathcal{A}^{n}\right)=\log _{2}\left|B_{n, \delta}\right|$.
For sufficiently large n, we have

$$
p\left(B_{n, \delta} \cap A_{n, \delta}\right) \geq p\left(B_{n, \delta}\right)-\delta \geq 1-2 \delta
$$

Then

$$
\left|B_{n, \delta} \cap A_{n, \delta}\right| \geq(1-2 \delta) 2^{n(H(\mathcal{A})-\epsilon)}
$$

We have

$$
\frac{1}{n} H_{\delta}\left(\mathcal{A}^{n}\right) \geq \frac{1}{n} \log _{2}(1-2 \delta)+H(\mathcal{A})-\epsilon .
$$

\square

