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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Random graphs

■ Discrepancy
■ Linear discrepancy
■ Hereditary discrepancy
■ Lower bound
■ The Beck-Fiala Theorem



Discrepancy
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■ Ω : a finite set.
■ χ : Ω → {−1, 1}.
■ For any A ⊂ Ω, χ(A) =

∑

a∈A χ(a).
■ For A ⊂ 2Ω,

disc(A, χ) = max
A∈A

|χ(A)|;

disc(A) = min
χ

disc(A, χ).
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■ Ω : a finite set.
■ χ : Ω → {−1, 1}.
■ For any A ⊂ Ω, χ(A) =

∑

a∈A χ(a).
■ For A ⊂ 2Ω,

disc(A, χ) = max
A∈A

|χ(A)|;

disc(A) = min
χ

disc(A, χ).

Geometric meaning: Assume |Ω| = m, |A| = n, and
B = (bij) be the m× n incidence matrix. Let v1, v2, . . . , vn
be the column vector of B. Then

disc(A) = min | ± v1 ± v2 ± · · · ± vn|∞.



A theorem
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Theorem: Let A be a family of n subsets of an m-set Ω.
Then

disc(A) ≤
√

2m ln(2n).
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Theorem: Let A be a family of n subsets of an m-set Ω.
Then

disc(A) ≤
√

2m ln(2n).

Proof: Let χ : Ω → {−1, 1} be random.
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Theorem: Let A be a family of n subsets of an m-set Ω.
Then

disc(A) ≤
√

2m ln(2n).

Proof: Let χ : Ω → {−1, 1} be random. Let

λ =
√

2m ln(2n). By Azuma’s inequality, we have

Pr(|χ(A)| > λ) < 2e−λ2/(2|A|) ≤ 1

n
.

With positive probability, we have |χ(A)| ≤ λ holds for every
A ∈ A. Therefore disc(A) ≤ λ. �



Spencer’s theorem

Topic Course on Probabilistic Methods (week 13) Linyuan Lu, University of South Carolina – 7 / 30

Theorem [Spencer (1985)]: Let A be a family of n
subsets of an n-element set Ω. Then

disc(A) < K
√
n.
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Theorem [Spencer (1985)]: Let A be a family of n
subsets of an n-element set Ω. Then

disc(A) < K
√
n.

■ In his paper, K = 6 is proved; here we will prove a
weaker version with K = 11.
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Theorem [Spencer (1985)]: Let A be a family of n
subsets of an n-element set Ω. Then

disc(A) < K
√
n.

■ In his paper, K = 6 is proved; here we will prove a
weaker version with K = 11.

■ If A consists on n sets on m points and m ≤ n. Then

disc(A, χ) < K
√
m
√

ln(n/m).



Basic entropy
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Let X be a random variable taking values in some range S.
The binary entropy of X, denoted by H(X) is defined by

H(X) = −
∑

x∈S
Pr(X = x) log2 Pr(X = x).
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Let X be a random variable taking values in some range S.
The binary entropy of X, denoted by H(X) is defined by

H(X) = −
∑

x∈S
Pr(X = x) log2 Pr(X = x).

Sub-additive property:

H(X, Y ) ≤ H(X) +H(Y ).

Here (X, Y ) is the random variable taking values in S × T
(where T is the range of Y .)



Proof of entropy inequality
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Proof:

H(X) +H(Y )−H(X, Y )

=
∑

i∈S

∑

j∈T
Pr(X = i, Y = j) log2

Pr(X = i, Y = j)

Pr(X = i)Pr(Y = j)

=
∑

i∈S

∑

j∈T
Pr(X = i)Pr(Y = j)f(zij),

where f(z) = z log2 z and zij =
Pr(X=i,Y=j)

Pr(X=i)Pr(Y=j) . By the

convexity inequality of f(z), we have

H(X) +H(Y )−H(X, Y ) ≥ f(1) = 0. �



A lemma
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A map χ : Ω → {−1, 0, 1} is called a partial coloring.
When χ(a) = 0 we say a is uncolored.

Lemma 13.2.2: Let A be a family of n subsets of an n-set
Ω. Then there is a partial coloring χ with at most 10−9n
points uncolored such that |χ(A)| ≤ 10

√
n for all A ∈ A.
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A map χ : Ω → {−1, 0, 1} is called a partial coloring.
When χ(a) = 0 we say a is uncolored.

Lemma 13.2.2: Let A be a family of n subsets of an n-set
Ω. Then there is a partial coloring χ with at most 10−9n
points uncolored such that |χ(A)| ≤ 10

√
n for all A ∈ A.

Proof: Let A := {A1, A2, . . . , An}. Consider a random
coloring

χ : Ω → {−1, 1}.
For 1 ≤ i ≤ n define

bi = nearest integer to
χ(Ai)

20
√
n
.



continue
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By Chernoff’s inequality, we have

Pr(bi = 0) > 1− 2e−50,

Pr(bi = 1) = Pr(bi = −1) < 2−50,

Pr(bi = 2) = Pr(bi = −2) < 2−450,
...

Pr(bi = s) = Pr(bi = −s) < 2−50(2s−1)2.



continue
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By Chernoff’s inequality, we have

Pr(bi = 0) > 1− 2e−50,

Pr(bi = 1) = Pr(bi = −1) < 2−50,

Pr(bi = 2) = Pr(bi = −2) < 2−450,
...

Pr(bi = s) = Pr(bi = −s) < 2−50(2s−1)2.

Recall the entropy H(bi) is defined as

H(bi) =
s=∞
∑

s=−∞
−Pr(bi = s) log2 Pr(bi = s).



continue
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H(bi) ≤ (1− 2e−50)[− log2(1− 2e−50)] + 2e−50[− log2 e
−50]

+ 2e−550[− log2 e
−450] + · · ·

< ǫ = 3× 10−20.

By the subadditive property, we have

H(b1, b2, . . . , bn) ≤
n

∑

i=1

H(bi) ≤ ǫn.

If a random variable Z assumes no value with probability
greater than 2−t, then H(Z) ≥ t. This implies there is a
particular n-tuple (s1, s2, . . . , sn) so that

Pr((b1, . . . , bn) = (s1, . . . , sn)) ≥ 2−ǫn.



continue
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Since every coloring has equal probability 2−n, there is a set
C consisting of at least 2(1−ǫ)n colorings χ : Ω → {−1, 1}, all
having the same value (b1, b2, . . . , bn).
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Since every coloring has equal probability 2−n, there is a set
C consisting of at least 2(1−ǫ)n colorings χ : Ω → {−1, 1}, all
having the same value (b1, b2, . . . , bn).

Kleitman (1966) proved that if |C| ≥ ∑

i≤r

(

n
i

)

with
r ≤ n/2 then C has diameter (of Hamming distance) at
least 2r.
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Since every coloring has equal probability 2−n, there is a set
C consisting of at least 2(1−ǫ)n colorings χ : Ω → {−1, 1}, all
having the same value (b1, b2, . . . , bn).

Kleitman (1966) proved that if |C| ≥ ∑

i≤r

(

n
i

)

with
r ≤ n/2 then C has diameter (of Hamming distance) at
least 2r.

Let r = αn and 2H(α) ≤ 21−ǫ. Taylor series expansion gives

H(
1

2
− x) ∼ 1− 2

ln 2
x2.

Thus C has diameter at least n(1− 10−9). Choose
χ1, χ2 ∈ C be at the maximal distance. Let χ = χ1−χ1

2 . Then
the partial coloring χ satisfying all requirements. �



Iteration
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We will iterate the procedure to color the remaining
uncolored points.
Lemma 13.2.3: Let A be a family of n subsets of an m-set
Ω with at most 10−40m points uncolored so that

χ(A) < 10
√
m
√

ln(n/m)

for all A ∈ A.
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We will iterate the procedure to color the remaining
uncolored points.
Lemma 13.2.3: Let A be a family of n subsets of an m-set
Ω with at most 10−40m points uncolored so that

χ(A) < 10
√
m
√

ln(n/m)

for all A ∈ A.

The proof is similar by define

bi = nearest integer to
χ(Ai)

20
√

m ln(n/m)
.

The detail is omitted. �



Proof of Theorem
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Proof: Apply Lemma 13.2.2 to find a partial coloring χ1

and then apply Lemma 13.2.3 repeatedly on the remaining
uncolored points giving χ2, χ3, . . . until all points have been
colored. Let χ =

∑

i≥1 χ
i.
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Proof: Apply Lemma 13.2.2 to find a partial coloring χ1

and then apply Lemma 13.2.3 repeatedly on the remaining
uncolored points giving χ2, χ3, . . . until all points have been
colored. Let χ =

∑

i≥1 χ
i. Then

|χ(A)| ≤ 10
√
n+ 10

√
10−9n

√
ln 109

+ 10
√
10−49n

√
ln 1049 + 10

√
10−89n

√
ln 1089

≤ 11
√
n. �
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Proof: Apply Lemma 13.2.2 to find a partial coloring χ1

and then apply Lemma 13.2.3 repeatedly on the remaining
uncolored points giving χ2, χ3, . . . until all points have been
colored. Let χ =

∑

i≥1 χ
i. Then

|χ(A)| ≤ 10
√
n+ 10

√
10−9n

√
ln 109

+ 10
√
10−49n

√
ln 1049 + 10

√
10−89n

√
ln 1089

≤ 11
√
n. �

The statement of case r < n can be proved similarly.



More points than sets
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Suppose m > n, A = {A1, A2, . . . , An} and Ω = [n]. The
linear discrepancy lindisc(A) is defined by

lindisc(A) = max
p1,...,pm∈[0,1]

min
ǫ1,...,ǫm∈{0,1}

max
A∈A

∣

∣

∣

∣

∣

∑

i∈A
(ǫi − pi)

∣

∣

∣

∣

∣

.
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Suppose m > n, A = {A1, A2, . . . , An} and Ω = [n]. The
linear discrepancy lindisc(A) is defined by

lindisc(A) = max
p1,...,pm∈[0,1]

min
ǫ1,...,ǫm∈{0,1}

max
A∈A

∣

∣

∣

∣

∣

∑

i∈A
(ǫi − pi)

∣

∣

∣

∣

∣

.

Setting all ǫi =
1
2 and scaling [0, 1] to [−1, 1], we have

disc(A) = min
ǫ′1,...,ǫ

′

m
∈{−1,1}

max
A∈A

|
∑

i∈A
ǫ′i|

= 2 min
ǫ1,...,ǫm∈{0,1}

max
A∈A

|
∑

i∈A
ǫi −

1

2
|

≤ 2 · lindisc(A).
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Theorem 13.3.1 Let A be a family of n sets on m points
with m ≥ n. Suppose that lindisc(A|X) ≤ K for every
subset X of at most n points. Then lindisc(A) ≤ K.
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Theorem 13.3.1 Let A be a family of n sets on m points
with m ≥ n. Suppose that lindisc(A|X) ≤ K for every
subset X of at most n points. Then lindisc(A) ≤ K.

Proof: For p1, . . . , pm ∈ [0, 1], call index j fixed if pi = 0 or
1 otherwise call it floating, and let F denote the set of
floating indices.



A theorem

Topic Course on Probabilistic Methods (week 13) Linyuan Lu, University of South Carolina – 17 / 30

Theorem 13.3.1 Let A be a family of n sets on m points
with m ≥ n. Suppose that lindisc(A|X) ≤ K for every
subset X of at most n points. Then lindisc(A) ≤ K.

Proof: For p1, . . . , pm ∈ [0, 1], call index j fixed if pi = 0 or
1 otherwise call it floating, and let F denote the set of
floating indices.

Our goal is to reduce p1, p2, . . . , pm so that |F | < n.
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Theorem 13.3.1 Let A be a family of n sets on m points
with m ≥ n. Suppose that lindisc(A|X) ≤ K for every
subset X of at most n points. Then lindisc(A) ≤ K.

Proof: For p1, . . . , pm ∈ [0, 1], call index j fixed if pi = 0 or
1 otherwise call it floating, and let F denote the set of
floating indices.

Our goal is to reduce p1, p2, . . . , pm so that |F | < n.

Suppose |F | ≥ n. Let y1, . . . , ym be a nonzero solution to
the homogeneous system

∑

j∈A∩F
yj = 0, A ∈ A.



continue
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Consider a line

p′j =

{

pj + λyj, j ∈ F,

pj, j 6∈ F.

The line will hit the the boundary of the hypercube Qm and
the intersection point gives a set of p′1, . . . , p

′
m with the

smaller floating indices. Critically, for all A ∈ A.

∑

j∈A
p′j =

∑

j∈A
pj + λ

∑

j∈A∩F
yj =

∑

j∈S
pj.

Iterate this process, we get some p∗1, . . . , p
∗
m with the set X

of floating indices satisfying |X| < n.



continue
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Since lindisc(A|X) ≤ K, there exists ǫj, j ∈ X so that

∣

∣

∣

∣

∑

j∈A∩X
p∗j − ǫj

∣

∣

∣

∣

≤ K, A ∈ A.

Extend ǫj to j ∈ X̄ by letting ǫj = p∗j . For any A ∈ A,

∣

∣

∣

∣

∑

j∈A
(pj − ǫj)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

j∈A
(p∗j − ǫj)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

j∈A∩X
(p∗j − ǫj)

∣

∣

∣

∣

≤ K.

Thus, lindisc(A) ≤ K. �



Hereditary discrepancy
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The hereditary discrepancy herdisc(A) is defined by

herdisc(A) = max
X∈Ω

disc(A|X).
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The hereditary discrepancy herdisc(A) is defined by

herdisc(A) = max
X∈Ω

disc(A|X).

Theorem 13.3.2: lindisc(A) ≤ herdisc(A).



Hereditary discrepancy

Topic Course on Probabilistic Methods (week 13) Linyuan Lu, University of South Carolina – 20 / 30

The hereditary discrepancy herdisc(A) is defined by

herdisc(A) = max
X∈Ω

disc(A|X).

Theorem 13.3.2: lindisc(A) ≤ herdisc(A).

Proof: Set K = herdisc(A). Let p1, . . . , pm ∈ [0, 1] be
given. Firs assume all pi have finite expansions in base 2.
Let T be the minimal integer so that all pi2

T ∈ Z. Let J be
the set of i for which pi2

T is odd. As disc(A|J) ≤ K, there
exists ǫj ∈ {−1, 1}, so that

∣

∣

∣

∣

∑

j∈J∩A
ǫj

∣

∣

∣

∣

≤ K, A ∈ A.
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For i from T to 0, let pj = p
(T )
j and p

(i−1)
j be the

“roundoffs” of pij. For any A ∈ A,

∣

∣

∣

∣

∑

j∈A
(p

(i−1)
j − p

(i)
j )

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

j∈J (i)∩A
2−iǫ

(i)
j

∣

∣

∣

∣

≤ 2−iK.

Thus, for any A ∈ A,

∣

∣

∣

∣

∑

j∈A
p
(0)
j − p

(T )
j

∣

∣

∣

∣

≤
T
∑

i=1

∣

∣

∣

∣

∑

j∈A
(p

(i−1)
j − p

(i)
j )

∣

∣

∣

∣

≤
T
∑

i=1

2−iK ≤ K.
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For p1, p2, . . . , pm ∈ [0, 1], consider the function

f(p1, . . . , pm) = min
ǫ1,...,ǫm∈{0,1}

max
A∈A

∣

∣

∣

∣

∣

∑

i∈A
(ǫi − pi)

∣

∣

∣

∣

∣

.

Note that f(p1, p2, . . . , pm) is continuous.
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For p1, p2, . . . , pm ∈ [0, 1], consider the function

f(p1, . . . , pm) = min
ǫ1,...,ǫm∈{0,1}

max
A∈A

∣

∣

∣

∣

∣

∑

i∈A
(ǫi − pi)

∣

∣

∣

∣

∣

.

Note that f(p1, p2, . . . , pm) is continuous. We just proved
that

f(p1, p2, . . . , pm) ≤ K

for a dense set of [0, 1]m. Thus it holds for any
(p1, . . . , pm) ∈ [0, 1]m. This implies

lindisc(A) ≤ K.
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Corollary: 13.3.3: Let A be a family of n sets on m
points. Suppose disc(A|X) ≤ K for every subset X with at
most n points. Then disc(A) ≤ 2K.
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Corollary: 13.3.3: Let A be a family of n sets on m
points. Suppose disc(A|X) ≤ K for every subset X with at
most n points. Then disc(A) ≤ 2K.

Proof: By Theorem 13.3.2, lindisc(A|X) ≤ K for every
X ⊂ Ω with |X| ≤ n. By Theorem 13.3.1, lindisc(A) ≤ K.
Thus,

disc(A) ≤ 2 · lindisc(A) ≤ 2K.
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Corollary: 13.3.3: Let A be a family of n sets on m
points. Suppose disc(A|X) ≤ K for every subset X with at
most n points. Then disc(A) ≤ 2K.

Proof: By Theorem 13.3.2, lindisc(A|X) ≤ K for every
X ⊂ Ω with |X| ≤ n. By Theorem 13.3.1, lindisc(A) ≤ K.
Thus,

disc(A) ≤ 2 · lindisc(A) ≤ 2K.

Corollary 13.3.4: For any family A of n sets of arbitrary
size

disc(A) ≤ 12
√
n.
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Lower bounds: disc(A) ≥ C
√
n.
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Lower bounds: disc(A) ≥ C
√
n.

Two methods:

■ Using Hadamard matrices.

■ Using probabilistic method.
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A Hadamad matrix is a n× n matrix H = (hij) with all
entries ±1 and row vectors mutually orthogonal (and hence
with column vectors mutually orthogonal).
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A Hadamad matrix is a n× n matrix H = (hij) with all
entries ±1 and row vectors mutually orthogonal (and hence
with column vectors mutually orthogonal).

■ HH ′ = nI.
■ If A is an n× n (±)-matrix, then | det(A)| ≤ nn/2. The

equality holds if and only if A is an Hadamard matrix.
■ If H1 and H2 are Hadamard matrices, then so is

H1 ⊗H2.
■ If ∃n× n Hadamard matrix, then n = 1, 2 or 4|n.
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A Hadamad matrix is a n× n matrix H = (hij) with all
entries ±1 and row vectors mutually orthogonal (and hence
with column vectors mutually orthogonal).

■ HH ′ = nI.
■ If A is an n× n (±)-matrix, then | det(A)| ≤ nn/2. The

equality holds if and only if A is an Hadamard matrix.
■ If H1 and H2 are Hadamard matrices, then so is

H1 ⊗H2.
■ If ∃n× n Hadamard matrix, then n = 1, 2 or 4|n.
It is conjectured that Hadamard matrix exists for every
n = 1, 2 and all multiples of 4.
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A Hadamad matrix is a n× n matrix H = (hij) with all
entries ±1 and row vectors mutually orthogonal (and hence
with column vectors mutually orthogonal).

■ HH ′ = nI.
■ If A is an n× n (±)-matrix, then | det(A)| ≤ nn/2. The

equality holds if and only if A is an Hadamard matrix.
■ If H1 and H2 are Hadamard matrices, then so is

H1 ⊗H2.
■ If ∃n× n Hadamard matrix, then n = 1, 2 or 4|n.
It is conjectured that Hadamard matrix exists for every
n = 1, 2 and all multiples of 4.

Hall (1986) For all ǫ > 0 and sufficiently large n, there is a
Hadamard matrix of order between n(1− ǫ) and n.



Construction I
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Let H be a Hadamard matrix of order n (even) with first
row and first column all ones. (Any Hadamard matrix can be
so “normalized” by multiplying appropriate rows and
columns by −1.) Let J be all ones square matrix of order n.
Let v = (v1, . . . , vn)

′ be the column vector with each
vi ∈ {−1, 1}. Then

〈(H+J)v, (H+J)v〉 = n2+2n(
n

∑

i=1

vi)v1+n(
n

∑

i=1

vi)
2 ≥ n2.

Setting H∗ = (H + J)/2, then,

‖H∗v‖∞ ≥
√

‖H∗v‖2/n ≥
√
n

2
.

Let A be the family of subsets with incidence matrix H∗.



Construction II
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■ M : a random 0, 1 matrix of order n.
■ di: i-th row sum of M , di = (1 + o(1))n/2.
■ v := (v1, . . . , vn)

′, vi = ±1, set Mv = (L1, L2, . . . , Ln).

Li ∼ B(di, 1/2)−B(di, 1/2) ∼ N(0,
√
n/2).
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■ M : a random 0, 1 matrix of order n.
■ di: i-th row sum of M , di = (1 + o(1))n/2.
■ v := (v1, . . . , vn)

′, vi = ±1, set Mv = (L1, L2, . . . , Ln).

Li ∼ B(di, 1/2)−B(di, 1/2) ∼ N(0,
√
n/2).

Pick λ so that
∫ λ

−λ

1√
2π

e−t2/2dt <
1

2
.

Then Pr(|Li| < λ
√
n/2) < 1

2. The expected number of v for
which |Mv|∞ < λ

√
n/2 is less than 1. ∃M such that

|Mv|∞ ≥ λ
√
n/2 for every v.
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■ M : a random 0, 1 matrix of order n.
■ di: i-th row sum of M , di = (1 + o(1))n/2.
■ v := (v1, . . . , vn)

′, vi = ±1, set Mv = (L1, L2, . . . , Ln).

Li ∼ B(di, 1/2)−B(di, 1/2) ∼ N(0,
√
n/2).

Pick λ so that
∫ λ

−λ

1√
2π

e−t2/2dt <
1

2
.

Then Pr(|Li| < λ
√
n/2) < 1

2. The expected number of v for
which |Mv|∞ < λ

√
n/2 is less than 1. ∃M such that

|Mv|∞ ≥ λ
√
n/2 for every v.

Let A be the family of sets with incident matrix M . Then

disc(A) ≥ λλ
√
n/2.
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For any A, let deg(A) denote the maximal number of sets
containing any particular points.
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For any A, let deg(A) denote the maximal number of sets
containing any particular points.

Theorem [Beck-Fiala 1981] Let A be a finite family of
finite sets. If deg(A) ≤ t, then

disc(A) ≤ 2t− 1.
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For any A, let deg(A) denote the maximal number of sets
containing any particular points.

Theorem [Beck-Fiala 1981] Let A be a finite family of
finite sets. If deg(A) ≤ t, then

disc(A) ≤ 2t− 1.

Proof: Assume A = {A1, A2, . . . , Am} where all Ai ⊂ [n].
Let x = (x1, . . . , xn) ∈ [−1, 1]n. A set Si has value
∑

j∈Si
xj. We say an index j is fixed if xj = ±1; otherwise

we say j is floating. A set Si is safe if it has at most t
floating points; otherwise it is active.

Fact: There are fewer active sets than floating points.



continue
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Initially all j are floating; i.e. x is the zero vector. We will
change x to x′ with fewer floating points while keep the
values of all sets to 0.
Iteration: For each active set, move the fixed points to the
right hand side. We get a system of linear equations where
the unknown variables are floating points. Since there are
fewer active sets than floating points. This is an
underdeterminded system. The solution contains a line,
parametrized

x′j = xj + λyj, j floating,

on which the active sets retain value zero. Choose the
smallest λ on the absolute value so that one of x′j = 1.



continue

Topic Course on Probabilistic Methods (week 13) Linyuan Lu, University of South Carolina – 30 / 30

After many iterations, we get a vector x so that every set is
safe and has value 0. For each floating point j, setting
xj = ±1 arbitrarily. For each set, the value may change less
than 2t and, as it is an integer, it is at most 2t− 1. �



continue
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After many iterations, we get a vector x so that every set is
safe and has value 0. For each floating point j, setting
xj = ±1 arbitrarily. For each set, the value may change less
than 2t and, as it is an integer, it is at most 2t− 1. �

Conjecture: If deg(A) ≤ t, then disc(A) ≤ K
√
t, for some

absolute constant.
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