Topic Course on Probabilistic Methods
 (Week 13)
 Discrepancy

Linyuan Lu
University of South Carolina

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Random graphs

- Discrepancy
- Linear discrepancy
- Hereditary discrepancy

■ Lower bound

- The Beck-Fiala Theorem

Discrepancy

- Ω : a finite set.
- $\chi: \Omega \rightarrow\{-1,1\}$.
- For any $A \subset \Omega, \chi(A)=\sum_{a \in A} \chi(a)$.
- For $\mathcal{A} \subset 2^{\Omega}$,

$$
\begin{aligned}
& \operatorname{disc}(\mathcal{A}, \chi)=\max _{A \in \mathcal{A}}|\chi(A)| ; \\
& \operatorname{disc}(\mathcal{A})=\min _{\chi} \operatorname{disc}(\mathcal{A}, \chi) .
\end{aligned}
$$

Discrepancy

- Ω : a finite set.
- $\chi: \Omega \rightarrow\{-1,1\}$.
- For any $A \subset \Omega, \chi(A)=\sum_{a \in A} \chi(a)$.
- For $\mathcal{A} \subset 2^{\Omega}$,

$$
\begin{aligned}
& \operatorname{disc}(\mathcal{A}, \chi)=\max _{A \in \mathcal{A}}|\chi(A)| ; \\
& \operatorname{disc}(\mathcal{A})=\min _{\chi} \operatorname{disc}(\mathcal{A}, \chi)
\end{aligned}
$$

Geometric meaning: Assume $|\Omega|=m,|\mathcal{A}|=n$, and $B=\left(b_{i j}\right)$ be the $m \times n$ incidence matrix. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the column vector of B. Then

$$
\operatorname{disc}(\mathcal{A})=\min \left| \pm v_{1} \pm v_{2} \pm \cdots \pm v_{n}\right|_{\infty}
$$

A theorem

Theorem: Let \mathcal{A} be a family of n subsets of an m-set Ω.
Then

$$
\operatorname{disc}(\mathcal{A}) \leq \sqrt{2 m \ln (2 n)}
$$

A theorem

Theorem: Let \mathcal{A} be a family of n subsets of an m-set Ω.
Then

$$
\operatorname{disc}(\mathcal{A}) \leq \sqrt{2 m \ln (2 n)}
$$

Proof: Let $\chi: \Omega \rightarrow\{-1,1\}$ be random.

A theorem

Theorem: Let \mathcal{A} be a family of n subsets of an m-set Ω.
Then

$$
\operatorname{disc}(\mathcal{A}) \leq \sqrt{2 m \ln (2 n)}
$$

Proof: Let $\chi: \Omega \rightarrow\{-1,1\}$ be random. Let
$\lambda=\sqrt{2 m \ln (2 n)}$. By Azuma's inequality, we have

$$
\operatorname{Pr}(|\chi(A)|>\lambda)<2 e^{-\lambda^{2} /(2|A|)} \leq \frac{1}{n}
$$

With positive probability, we have $|\chi(A)| \leq \lambda$ holds for every $A \in \mathcal{A}$. Therefore $\operatorname{disc}(A) \leq \lambda$.

Spencer's theorem

Theorem [Spencer (1985)]: Let \mathcal{A} be a family of n subsets of an n-element set Ω. Then

$$
\operatorname{disc}(\mathcal{A})<K \sqrt{n}
$$

Spencer's theorem

Theorem [Spencer (1985)]: Let \mathcal{A} be a family of n subsets of an n-element set Ω. Then

$$
\operatorname{disc}(\mathcal{A})<K \sqrt{n}
$$

- In his paper, $K=6$ is proved; here we will prove a weaker version with $K=11$.

Spencer's theorem

Theorem [Spencer (1985)]: Let \mathcal{A} be a family of n

 subsets of an n-element set Ω. Then$$
\operatorname{disc}(\mathcal{A})<K \sqrt{n}
$$

- In his paper, $K=6$ is proved; here we will prove a weaker version with $K=11$.
- If \mathcal{A} consists on n sets on m points and $m \leq n$. Then

$$
\operatorname{disc}(\mathcal{A}, \chi)<K \sqrt{m} \sqrt{\ln (n / m)}
$$

Basic entropy

Let X be a random variable taking values in some range S. The binary entropy of X, denoted by $H(X)$ is defined by

$$
H(X)=-\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \operatorname{Pr}(X=x) .
$$

Basic entropy

Let X be a random variable taking values in some range S. The binary entropy of X, denoted by $H(X)$ is defined by

$$
H(X)=-\sum_{x \in S} \operatorname{Pr}(X=x) \log _{2} \operatorname{Pr}(X=x) .
$$

Sub-additive property:

$$
H(X, Y) \leq H(X)+H(Y)
$$

Here (X, Y) is the random variable taking values in $S \times T$ (where T is the range of Y.)

Proof of entropy inequality

Proof:

$$
\begin{aligned}
& H(X)+H(Y)-H(X, Y) \\
&=\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i, Y=j) \log _{2} \frac{\operatorname{Pr}(X=i, Y=j)}{\operatorname{Pr}(X=i) \operatorname{Pr}(Y=j)} \\
& \quad=\sum_{i \in S} \sum_{j \in T} \operatorname{Pr}(X=i) \operatorname{Pr}(Y=j) f\left(z_{i j}\right),
\end{aligned}
$$

where $f(z)=z \log _{2} z$ and $z_{i j}=\frac{\operatorname{Pr}(X=i, Y=j)}{\operatorname{Pr}(X=i) \operatorname{Pr}(Y=j)}$. By the convexity inequality of $f(z)$, we have

$$
H(X)+H(Y)-H(X, Y) \geq f(1)=0
$$

\square

A lemma

A map $\chi: \Omega \rightarrow\{-1,0,1\}$ is called a partial coloring. When $\chi(a)=0$ we say a is uncolored.

Lemma 13.2.2: Let \mathcal{A} be a family of n subsets of an n-set Ω. Then there is a partial coloring χ with at most $10^{-9} n$ points uncolored such that $|\chi(\mathcal{A})| \leq 10 \sqrt{n}$ for all $A \in \mathcal{A}$.

A lemma

A map $\chi: \Omega \rightarrow\{-1,0,1\}$ is called a partial coloring. When $\chi(a)=0$ we say a is uncolored.
Lemma 13.2.2: Let \mathcal{A} be a family of n subsets of an n-set Ω. Then there is a partial coloring χ with at most $10^{-9} n$ points uncolored such that $|\chi(\mathcal{A})| \leq 10 \sqrt{n}$ for all $A \in \mathcal{A}$.
Proof: Let $\mathcal{A}:=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Consider a random coloring

$$
\chi: \Omega \rightarrow\{-1,1\} .
$$

For $1 \leq i \leq n$ define

$$
b_{i}=\text { nearest integer to } \frac{\chi\left(A_{i}\right)}{20 \sqrt{n}}
$$

continue

By Chernoff's inequality, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(b_{i}=0\right)>1-2 e^{-50} \\
& \operatorname{Pr}\left(b_{i}=1\right)=\operatorname{Pr}\left(b_{i}=-1\right)<2^{-50}, \\
& \operatorname{Pr}\left(b_{i}=2\right)=\operatorname{Pr}\left(b_{i}=-2\right)<2^{-450}, \\
& \quad \vdots \\
& \operatorname{Pr}\left(b_{i}=s\right)=\operatorname{Pr}\left(b_{i}=-s\right)<2^{-50(2 s-1)^{2}} .
\end{aligned}
$$

continue

By Chernoff's inequality, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(b_{i}=0\right)>1-2 e^{-50} \\
& \operatorname{Pr}\left(b_{i}=1\right)=\operatorname{Pr}\left(b_{i}=-1\right)<2^{-50} \\
& \operatorname{Pr}\left(b_{i}=2\right)=\operatorname{Pr}\left(b_{i}=-2\right)<2^{-450}, \\
& \quad \vdots \\
& \operatorname{Pr}\left(b_{i}=s\right)=\operatorname{Pr}\left(b_{i}=-s\right)<2^{-50(2 s-1)^{2}} .
\end{aligned}
$$

Recall the entropy $H\left(b_{i}\right)$ is defined as

$$
H\left(b_{i}\right)=\sum_{s=-\infty}^{s=\infty}-\operatorname{Pr}\left(b_{i}=s\right) \log _{2} \operatorname{Pr}\left(b_{i}=s\right) .
$$

continue

$$
\begin{aligned}
H\left(b_{i}\right) & \leq\left(1-2 e^{-50}\right)\left[-\log _{2}\left(1-2 e^{-50}\right)\right]+2 e^{-50}\left[-\log _{2} e^{-50}\right] \\
& +2 e^{-550}\left[-\log _{2} e^{-450}\right]+\cdots \\
& <\epsilon=3 \times 10^{-20} .
\end{aligned}
$$

By the subadditive property, we have

$$
H\left(b_{1}, b_{2}, \ldots, b_{n}\right) \leq \sum_{i=1}^{n} H\left(b_{i}\right) \leq \epsilon n
$$

If a random variable Z assumes no value with probability greater than 2^{-t}, then $H(Z) \geq t$. This implies there is a particular n-tuple $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ so that

$$
\operatorname{Pr}\left(\left(b_{1}, \ldots, b_{n}\right)=\left(s_{1}, \ldots, s_{n}\right)\right) \geq 2^{-\epsilon n}
$$

continue

Since every coloring has equal probability 2^{-n}, there is a set \mathcal{C} consisting of at least $2^{(1-\epsilon) n}$ colorings $\chi: \Omega \rightarrow\{-1,1\}$, all having the same value $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.

continue

Since every coloring has equal probability 2^{-n}, there is a set \mathcal{C} consisting of at least $2^{(1-\epsilon) n}$ colorings $\chi: \Omega \rightarrow\{-1,1\}$, all having the same value $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
Kleitman (1966) proved that if $|\mathcal{C}| \geq \sum_{i \leq r}\binom{n}{i}$ with $r \leq n / 2$ then \mathcal{C} has diameter (of Hamming distance) at least $2 r$.

continue

Since every coloring has equal probability 2^{-n}, there is a set \mathcal{C} consisting of at least $2^{(1-\epsilon) n}$ colorings $\chi: \Omega \rightarrow\{-1,1\}$, all having the same value $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
Kleitman (1966) proved that if $|\mathcal{C}| \geq \sum_{i \leq r}\binom{n}{i}$ with $r \leq n / 2$ then \mathcal{C} has diameter (of Hamming distance) at least $2 r$.
Let $r=\alpha n$ and $2^{H(\alpha)} \leq 2^{1-\epsilon}$. Taylor series expansion gives

$$
H\left(\frac{1}{2}-x\right) \sim 1-\frac{2}{\ln 2} x^{2}
$$

Thus \mathcal{C} has diameter at least $n\left(1-10^{-9}\right)$. Choose $\chi_{1}, \chi_{2} \in \mathcal{C}$ be at the maximal distance. Let $\chi=\frac{\chi_{1}-\chi_{1}}{2}$. Then the partial coloring χ satisfying all requirements.

Iteration

We will iterate the procedure to color the remaining uncolored points.
Lemma 13.2.3: Let \mathcal{A} be a family of n subsets of an m-set Ω with at most $10^{-40} \mathrm{~m}$ points uncolored so that

$$
\chi(A)<10 \sqrt{m} \sqrt{\ln (n / m)}
$$

for all $A \in \mathcal{A}$.

Iteration

We will iterate the procedure to color the remaining uncolored points.
Lemma 13.2.3: Let \mathcal{A} be a family of n subsets of an m-set Ω with at most $10^{-40} \mathrm{~m}$ points uncolored so that

$$
\chi(A)<10 \sqrt{m} \sqrt{\ln (n / m)}
$$

for all $A \in \mathcal{A}$.
The proof is similar by define

$$
b_{i}=\text { nearest integer to } \frac{\chi\left(A_{i}\right)}{20 \sqrt{m \ln (n / m)}} .
$$

Proof of Theorem

Proof: Apply Lemma 13.2.2 to find a partial coloring χ^{1} and then apply Lemma 13.2.3 repeatedly on the remaining uncolored points giving $\chi^{2}, \chi^{3}, \ldots$ until all points have been colored. Let $\chi=\sum_{i \geq 1} \chi^{i}$.

Proof of Theorem

Proof: Apply Lemma 13.2.2 to find a partial coloring χ^{1} and then apply Lemma 13.2.3 repeatedly on the remaining uncolored points giving $\chi^{2}, \chi^{3}, \ldots$ until all points have been colored. Let $\chi=\sum_{i \geq 1} \chi^{i}$. Then

$$
\begin{aligned}
|\chi(A)| \leq & 10 \sqrt{n}+10 \sqrt{10^{-9} n} \sqrt{\ln 10^{9}} \\
& +10 \sqrt{10^{-49} n} \sqrt{\ln 10^{49}}+10 \sqrt{10^{-89} n} \sqrt{\ln 10^{89}} \\
\leq & 11 \sqrt{n} .
\end{aligned}
$$

Proof of Theorem

Proof: Apply Lemma 13.2.2 to find a partial coloring χ^{1} and then apply Lemma 13.2.3 repeatedly on the remaining uncolored points giving $\chi^{2}, \chi^{3}, \ldots$ until all points have been colored. Let $\chi=\sum_{i \geq 1} \chi^{i}$. Then

$$
\begin{aligned}
|\chi(A)| \leq & 10 \sqrt{n}+10 \sqrt{10^{-9} n} \sqrt{\ln 10^{9}} \\
& +10 \sqrt{10^{-49} n} \sqrt{\ln 10^{49}}+10 \sqrt{10^{-89} n} \sqrt{\ln 10^{89}} \\
\leq & 11 \sqrt{n} .
\end{aligned}
$$

The statement of case $r<n$ can be proved similarly.

More points than sets

Suppose $m>n, \mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $\Omega=[n]$. The linear discrepancy $\operatorname{lin} \operatorname{disc}(\mathcal{A})$ is defined by

$$
\operatorname{lindisc}(\mathcal{A})=\max _{p_{1}, \ldots, p_{m} \in[0,1]} \min _{\epsilon_{1}, \ldots, \epsilon_{m} \in\{0,1\}} \max _{A \in \mathcal{A}}\left|\sum_{i \in A}\left(\epsilon_{i}-p_{i}\right)\right| .
$$

More points than sets

Suppose $m>n, \mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $\Omega=[n]$. The linear discrepancy $\operatorname{lin} \operatorname{disc}(\mathcal{A})$ is defined by

$$
\operatorname{lindisc}(\mathcal{A})=\max _{p_{1}, \ldots, p_{m} \in[0,1]} \min _{\epsilon_{1}, \ldots, \epsilon_{m} \in\{0,1\}} \max _{A \in \mathcal{A}}\left|\sum_{i \in A}\left(\epsilon_{i}-p_{i}\right)\right| .
$$

Setting all $\epsilon_{i}=\frac{1}{2}$ and scaling $[0,1]$ to $[-1,1]$, we have

$$
\begin{aligned}
\operatorname{disc}(A) & =\min _{\epsilon_{1}^{\prime}, \ldots, \epsilon_{m}^{\prime} \in\{-1,1\}} \max _{A \in \mathcal{A}}\left|\sum_{i \in A} \epsilon_{i}^{\prime}\right| \\
& =2 \min _{\epsilon_{1}, \ldots, \epsilon_{m} \in\{0,1\}} \max _{A \in \mathcal{A}}\left|\sum_{i \in A} \epsilon_{i}-\frac{1}{2}\right| \\
& \leq 2 \cdot \operatorname{lindisc}(A) .
\end{aligned}
$$

A theorem

Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\operatorname{lindisc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X of at most n points. Then $\operatorname{lindisc}(\mathcal{A}) \leq K$.

A theorem

Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\operatorname{lindisc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X of at most n points. Then $\operatorname{lindisc}(\mathcal{A}) \leq K$.
Proof: For $p_{1}, \ldots, p_{m} \in[0,1]$, call index j fixed if $p_{i}=0$ or 1 otherwise call it floating, and let F denote the set of floating indices.

A theorem

Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\operatorname{lindisc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X of at most n points. Then $\operatorname{lindisc}(\mathcal{A}) \leq K$.
Proof: For $p_{1}, \ldots, p_{m} \in[0,1]$, call index j fixed if $p_{i}=0$ or 1 otherwise call it floating, and let F denote the set of floating indices.

Our goal is to reduce $p_{1}, p_{2}, \ldots, p_{m}$ so that $|F|<n$.

A theorem

Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\operatorname{lindisc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X of at most n points. Then $\operatorname{lindisc}(\mathcal{A}) \leq K$.
Proof: For $p_{1}, \ldots, p_{m} \in[0,1]$, call index j fixed if $p_{i}=0$ or 1 otherwise call it floating, and let F denote the set of floating indices.
Our goal is to reduce $p_{1}, p_{2}, \ldots, p_{m}$ so that $|F|<n$.
Suppose $|F| \geq n$. Let y_{1}, \ldots, y_{m} be a nonzero solution to the homogeneous system

$$
\sum_{j \in A \cap F} y_{j}=0, \quad A \in \mathcal{A} .
$$

continue

Consider a line

$$
p_{j}^{\prime}= \begin{cases}p_{j}+\lambda y_{j}, & j \in F, \\ p_{j}, & j \notin F .\end{cases}
$$

The line will hit the the boundary of the hypercube Q^{m} and the intersection point gives a set of $p_{1}^{\prime}, \ldots, p_{m}^{\prime}$ with the smaller floating indices. Critically, for all $A \in \mathcal{A}$.

$$
\sum_{j \in A} p_{j}^{\prime}=\sum_{j \in A} p_{j}+\lambda \sum_{j \in A \cap F} y_{j}=\sum_{j \in S} p_{j} .
$$

Iterate this process, we get some $p_{1}^{*}, \ldots, p_{m}^{*}$ with the set X of floating indices satisfying $|X|<n$.

continue

Since lindisc $\left(\left.\mathcal{A}\right|_{X}\right) \leq K$, there exists $\epsilon_{j}, j \in X$ so that

$$
\left|\sum_{j \in A \cap X} p_{j}^{*}-\epsilon_{j}\right| \leq K, \quad A \in \mathcal{A} .
$$

Extend ϵ_{j} to $j \in \bar{X}$ by letting $\epsilon_{j}=p_{j}^{*}$. For any $A \in \mathcal{A}$,

$$
\begin{aligned}
\left|\sum_{j \in A}\left(p_{j}-\epsilon_{j}\right)\right| & =\left|\sum_{j \in A}\left(p_{j}^{*}-\epsilon_{j}\right)\right| \\
& =\left|\sum_{j \in A \cap X}\left(p_{j}^{*}-\epsilon_{j}\right)\right| \leq K .
\end{aligned}
$$

Thus, lindisc $(\mathcal{A}) \leq K$.

Hereditary discrepancy

The hereditary discrepancy $\operatorname{herdisc}(\mathcal{A})$ is defined by

$$
\operatorname{herdisc}(\mathcal{A})=\max _{X \in \Omega} \operatorname{disc}\left(\left.\mathcal{A}\right|_{X}\right) .
$$

Hereditary discrepancy

The hereditary discrepancy $\operatorname{herdisc}(\mathcal{A})$ is defined by

$$
\operatorname{herdisc}(\mathcal{A})=\max _{X \in \Omega} \operatorname{disc}\left(\left.\mathcal{A}\right|_{X}\right) .
$$

Theorem 13.3.2: $\operatorname{lindisc}(\mathcal{A}) \leq \operatorname{herdisc}(\mathcal{A})$.

Hereditary discrepancy

The hereditary discrepancy $\operatorname{herdisc}(\mathcal{A})$ is defined by

$$
\operatorname{herdisc}(\mathcal{A})=\max _{X \in \Omega} \operatorname{disc}\left(\left.\mathcal{A}\right|_{X}\right) .
$$

Theorem 13.3.2: $\operatorname{lindisc}(\mathcal{A}) \leq \operatorname{herdisc}(\mathcal{A})$.
Proof: Set $K=\operatorname{herdisc}(\mathcal{A})$. Let $p_{1}, \ldots, p_{m} \in[0,1]$ be given. Firs assume all p_{i} have finite expansions in base 2. Let T be the minimal integer so that all $p_{i} 2^{T} \in \mathbb{Z}$. Let J be the set of i for which $p_{i} 2^{T}$ is odd. As $\operatorname{disc}\left(\left.\mathcal{A}\right|_{J}\right) \leq K$, there exists $\epsilon_{j} \in\{-1,1\}$, so that

$$
\left|\sum_{j \in J \cap A} \epsilon_{j}\right| \leq K, \quad A \in \mathcal{A} .
$$

continue

For i from T to 0 , let $p_{j}=p_{j}^{(T)}$ and $p_{j}^{(i-1)}$ be the "roundoffs" of p_{j}^{i}. For any $A \in \mathcal{A}$,

$$
\left|\sum_{j \in A}\left(p_{j}^{(i-1)}-p_{j}^{(i)}\right)\right|=\left|\sum_{j \in J^{(i)} \cap A} 2^{-i} \epsilon_{j}^{(i)}\right| \leq 2^{-i} K
$$

Thus, for any $A \in \mathcal{A}$,

$$
\left|\sum_{j \in A} p_{j}^{(0)}-p_{j}^{(T)}\right| \leq \sum_{i=1}^{T}\left|\sum_{j \in A}\left(p_{j}^{(i-1)}-p_{j}^{(i)}\right)\right| \leq \sum_{i=1}^{T} 2^{-i} K \leq K
$$

continue

For $p_{1}, p_{2}, \ldots, p_{m} \in[0,1]$, consider the function

$$
f\left(p_{1}, \ldots, p_{m}\right)=\min _{\epsilon_{1}, \ldots, \epsilon_{m} \in\{0,1\}} \max _{A \in \mathcal{A}}\left|\sum_{i \in A}\left(\epsilon_{i}-p_{i}\right)\right| .
$$

Note that $f\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is continuous.

continue

For $p_{1}, p_{2}, \ldots, p_{m} \in[0,1]$, consider the function

$$
f\left(p_{1}, \ldots, p_{m}\right)=\min _{\epsilon_{1}, \ldots, \epsilon_{m} \in\{0,1\}} \max _{A \in \mathcal{A}}\left|\sum_{i \in A}\left(\epsilon_{i}-p_{i}\right)\right| .
$$

Note that $f\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is continuous. We just proved that

$$
f\left(p_{1}, p_{2}, \ldots, p_{m}\right) \leq K
$$

for a dense set of $[0,1]^{m}$. Thus it holds for any $\left(p_{1}, \ldots, p_{m}\right) \in[0,1]^{m}$. This implies

$$
\operatorname{lindisc}(\mathcal{A}) \leq K
$$

Corollary

Corollary: 13.3.3: Let \mathcal{A} be a family of n sets on m points. Suppose $\operatorname{disc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X with at most n points. Then $\operatorname{disc}(\mathcal{A}) \leq 2 K$.

Corollary

Corollary: 13.3.3: Let \mathcal{A} be a family of n sets on m points. Suppose $\operatorname{disc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X with at most n points. Then $\operatorname{disc}(\mathcal{A}) \leq 2 K$.
Proof: By Theorem 13.3.2, lindisc $\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every $X \subset \Omega$ with $|X| \leq n$. By Theorem 13.3.1, lindisc $(\mathcal{A}) \leq K$. Thus,

$$
\operatorname{disc}(\mathcal{A}) \leq 2 \cdot \operatorname{lindisc}(\mathcal{A}) \leq 2 K
$$

Corollary

Corollary: 13.3.3: Let \mathcal{A} be a family of n sets on m points. Suppose $\operatorname{disc}\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every subset X with at most n points. Then $\operatorname{disc}(\mathcal{A}) \leq 2 K$.
Proof: By Theorem 13.3.2, lindisc $\left(\left.\mathcal{A}\right|_{X}\right) \leq K$ for every $X \subset \Omega$ with $|X| \leq n$. By Theorem 13.3.1, lindisc $(\mathcal{A}) \leq K$. Thus,

$$
\operatorname{disc}(\mathcal{A}) \leq 2 \cdot \operatorname{lindisc}(\mathcal{A}) \leq 2 K
$$

Corollary 13.3.4: For any family \mathcal{A} of n sets of arbitrary size

$$
\operatorname{disc}(\mathcal{A}) \leq 12 \sqrt{n}
$$

Lower bounds

Lower bounds: $\operatorname{disc}(\mathcal{A}) \geq C \sqrt{n}$.

Lower bounds

Lower bounds: $\operatorname{disc}(\mathcal{A}) \geq C \sqrt{n}$.

Two methods:
■ Using Hadamard matrices.

Lower bounds

Lower bounds: $\operatorname{disc}(\mathcal{A}) \geq C \sqrt{n}$.

Two methods:
■ Using Hadamard matrices.

- Using probabilistic method.

Hadamard matrices

A Hadamad matrix is a $n \times n$ matrix $H=\left(h_{i j}\right)$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

Hadamard matrices

A Hadamad matrix is a $n \times n$ matrix $H=\left(h_{i j}\right)$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

- $H H^{\prime}=n I$.
- If A is an $n \times n(\pm)$-matrix, then $|\operatorname{det}(A)| \leq n^{n / 2}$. The equality holds if and only if A is an Hadamard matrix.
- If H_{1} and H_{2} are Hadamard matrices, then so is $H_{1} \otimes H_{2}$.
- If $\exists n \times n$ Hadamard matrix, then $n=1,2$ or $4 \mid n$.

Hadamard matrices

A Hadamad matrix is a $n \times n$ matrix $H=\left(h_{i j}\right)$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

- $H H^{\prime}=n I$.
- If A is an $n \times n(\pm)$-matrix, then $|\operatorname{det}(A)| \leq n^{n / 2}$. The equality holds if and only if A is an Hadamard matrix.
- If H_{1} and H_{2} are Hadamard matrices, then so is $H_{1} \otimes H_{2}$.
- If $\exists n \times n$ Hadamard matrix, then $n=1,2$ or $4 \mid n$.

It is conjectured that Hadamard matrix exists for every $n=1,2$ and all multiples of 4 .

Hadamard matrices

A Hadamad matrix is a $n \times n$ matrix $H=\left(h_{i j}\right)$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

- $H H^{\prime}=n I$.
- If A is an $n \times n(\pm)$-matrix, then $|\operatorname{det}(A)| \leq n^{n / 2}$. The equality holds if and only if A is an Hadamard matrix.
- If H_{1} and H_{2} are Hadamard matrices, then so is $H_{1} \otimes H_{2}$.
- If $\exists n \times n$ Hadamard matrix, then $n=1,2$ or $4 \mid n$.

It is conjectured that Hadamard matrix exists for every $n=1,2$ and all multiples of 4 .
Hall (1986) For all $\epsilon>0$ and sufficiently large n, there is a Hadamard matrix of order between $n(1-\epsilon)$ and n.

Construction I

Let H be a Hadamard matrix of order n (even) with first row and first column all ones. (Any Hadamard matrix can be so "normalized" by multiplying appropriate rows and columns by -1 .) Let J be all ones square matrix of order n. Let $v=\left(v_{1}, \ldots, v_{n}\right)^{\prime}$ be the column vector with each $v_{i} \in\{-1,1\}$. Then
$\langle(H+J) v,(H+J) v\rangle=n^{2}+2 n\left(\sum_{i=1}^{n} v_{i}\right) v_{1}+n\left(\sum_{i=1}^{n} v_{i}\right)^{2} \geq n^{2}$.
Setting $H^{*}=(H+J) / 2$, then,

$$
\left\|H^{*} v\right\|_{\infty} \geq \sqrt{\left\|H^{*} v\right\|^{2} / n} \geq \frac{\sqrt{n}}{2}
$$

Let \mathcal{A} be the family of subsets with incidence matrix H^{*}.

Construction II

M : a random 0,1 matrix of order n.
d_{i} : i-th row sum of $M, d_{i}=(1+o(1)) n / 2$.
$v:=\left(v_{1}, \ldots, v_{n}\right)^{\prime}, v_{i}= \pm 1$, set $M v=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$.

$$
L_{i} \sim B\left(d_{i}, 1 / 2\right)-B\left(d_{i}, 1 / 2\right) \sim N(0, \sqrt{n} / 2)
$$

Construction II

- M : a random 0,1 matrix of order n. d_{i} : i-th row sum of $M, d_{i}=(1+o(1)) n / 2$.
$v:=\left(v_{1}, \ldots, v_{n}\right)^{\prime}, v_{i}= \pm 1$, set $M v=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$.

$$
L_{i} \sim B\left(d_{i}, 1 / 2\right)-B\left(d_{i}, 1 / 2\right) \sim N(0, \sqrt{n} / 2)
$$

Pick λ so that

$$
\int_{-\lambda}^{\lambda} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t<\frac{1}{2}
$$

Then $\operatorname{Pr}\left(\left|L_{i}\right|<\lambda \sqrt{n} / 2\right)<\frac{1}{2}$. The expected number of v for which $|M v|_{\infty}<\lambda \sqrt{n} / 2$ is less than $1 . \exists M$ such that $|M v|_{\infty} \geq \lambda \sqrt{n} / 2$ for every v.

Construction II

- M : a random 0,1 matrix of order n.
- $d_{i}: i$-th row sum of $M, d_{i}=(1+o(1)) n / 2$.
- $v:=\left(v_{1}, \ldots, v_{n}\right)^{\prime}, v_{i}= \pm 1$, set $M v=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$.

$$
L_{i} \sim B\left(d_{i}, 1 / 2\right)-B\left(d_{i}, 1 / 2\right) \sim N(0, \sqrt{n} / 2)
$$

Pick λ so that

$$
\int_{-\lambda}^{\lambda} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t<\frac{1}{2}
$$

Then $\operatorname{Pr}\left(\left|L_{i}\right|<\lambda \sqrt{n} / 2\right)<\frac{1}{2}$. The expected number of v for which $|M v|_{\infty}<\lambda \sqrt{n} / 2$ is less than $1 . \exists M$ such that $|M v|_{\infty} \geq \lambda \sqrt{n} / 2$ for every v.
Let \mathcal{A} be the family of sets with incident matrix M. Then

$$
\operatorname{disc}(\mathcal{A}) \geq \lambda \lambda \sqrt{n} / 2
$$

Beck-Fiala Theorem

For any \mathcal{A}, let $\operatorname{deg}(\mathcal{A})$ denote the maximal number of sets containing any particular points.

Beck-Fiala Theorem

For any \mathcal{A}, let $\operatorname{deg}(\mathcal{A})$ denote the maximal number of sets containing any particular points.
Theorem [Beck-Fiala 1981] Let \mathcal{A} be a finite family of finite sets. If $\operatorname{deg}(\mathcal{A}) \leq t$, then

$$
\operatorname{disc}(\mathcal{A}) \leq 2 t-1
$$

Beck-Fiala Theorem

For any \mathcal{A}, let $\operatorname{deg}(\mathcal{A})$ denote the maximal number of sets containing any particular points.
Theorem [Beck-Fiala 1981] Let \mathcal{A} be a finite family of finite sets. If $\operatorname{deg}(\mathcal{A}) \leq t$, then

$$
\operatorname{disc}(\mathcal{A}) \leq 2 t-1
$$

Proof: Assume $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ where all $A_{i} \subset[n]$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in[-1,1]^{n}$. A set S_{i} has value $\sum_{j \in S_{i}} x_{j}$. We say an index j is fixed if $x_{j}= \pm 1$; otherwise we say j is floating. A set S_{i} is safe if it has at most t floating points; otherwise it is active.

Fact: There are fewer active sets than floating points.

continue

Initially all j are floating; i.e. x is the zero vector. We will change x to x^{\prime} with fewer floating points while keep the values of all sets to 0 .
Iteration: For each active set, move the fixed points to the right hand side. We get a system of linear equations where the unknown variables are floating points. Since there are fewer active sets than floating points. This is an underdeterminded system. The solution contains a line, parametrized

$$
x_{j}^{\prime}=x_{j}+\lambda y_{j}, \quad j \text { floating },
$$

on which the active sets retain value zero. Choose the smallest λ on the absolute value so that one of $x_{j}^{\prime}=1$.

continue

After many iterations, we get a vector x so that every set is safe and has value 0 . For each floating point j, setting $x_{j}= \pm 1$ arbitrarily. For each set, the value may change less than $2 t$ and, as it is an integer, it is at most $2 t-1$.

continue

After many iterations, we get a vector x so that every set is safe and has value 0 . For each floating point j, setting $x_{j}= \pm 1$ arbitrarily. For each set, the value may change less than $2 t$ and, as it is an integer, it is at most $2 t-1$.
Conjecture: If $\operatorname{deg}(\mathcal{A}) \leq t$, then $\operatorname{disc}(\mathcal{A}) \leq K \sqrt{t}$, for some absolute constant.

