

Linyuan Lu

University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Random graphs

- Supercritical regimes
- Barely Supercritical Phase
- The critical window
- Range V
- Threshold of connectivity
- Range VI

Now we consider G(n, p) for p = c/n, with c > 1 constant. Let y := y(c) be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant K > 0 and a small constant $\delta > 0$. Let C(v) be the component of G(n, p) containing v.

Now we consider G(n, p) for p = c/n, with c > 1 constant. Let y := y(c) be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant K > 0 and a small constant $\delta > 0$. Let C(v) be the component of G(n, p) containing v.

•
$$C(v)$$
 is small if $|C(v)| < K \ln n$.

Now we consider G(n, p) for p = c/n, with c > 1 constant. Let y := y(c) be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant K > 0 and a small constant $\delta > 0$. Let C(v) be the component of G(n, p) containing v.

•
$$C(v)$$
 is small if $|C(v)| < K \ln n$.

$$C(v)$$
 is **giant** if $||C(v)| - yn| < \delta n$.

Now we consider G(n,p) for p = c/n, with c > 1 constant. Let y := y(c) be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant K > 0 and a small constant $\delta > 0$. Let C(v) be the component of G(n,p) containing v.

- C(v) is small if $|C(v)| < K \ln n$.
- C(v) is giant if $||C(v)| yn| < \delta n$.
- C(v) is **awkward** otherwise.

Now we consider G(n,p) for p = c/n, with c > 1 constant. Let y := y(c) be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant K > 0 and a small constant $\delta > 0$. Let C(v) be the component of G(n,p) containing v.

•
$$C(v)$$
 is small if $|C(v)| < K \ln n$.

- C(v) is **giant** if $||C(v)| yn| < \delta n$.
- C(v) is **awkward** otherwise.

Claim: The probability of having any awkward component is $o(n^{-20})$.

No middle ground

Proof: We will show for any awkward t, $Pr(|C(v)| = t) = o(n^{-22})$. Note

$$\Pr(|C(v)| = t) \le \Pr(B(n-1, 1 - (1 - \frac{c}{n})^t) = t - 1.$$

No middle ground

Proof: We will show for any awkward t, $Pr(|C(v)| = t) = o(n^{-22})$. Note

 $\Pr(|C(v)| = t) \leq \Pr(B(n-1, 1-(1-\frac{c}{n})^t) = t-1.$ If t = o(n), then $1 - (1-\frac{c}{n})^t \approx \frac{ct}{n}$. So the mean is about ct, which is not close to t. If t = xn, then $1 - (1 - \frac{c}{n})^t) \approx 1 - e^{-cx}$. Since $1 - e^{-cx} \neq x$, so the mean is not near t.

No middle ground

Proof: We will show for any awkward t, $Pr(|C(v)| = t) = o(n^{-22})$. Note

 $\Pr(|C(v)| = t) \leq \Pr(B(n-1, 1-(1-\frac{c}{n})^t) = t-1.$ If t = o(n), then $1 - (1-\frac{c}{n})^t \approx \frac{ct}{n}$. So the mean is about ct, which is not close to t. If t = xn, then $1 - (1 - \frac{c}{n})^t) \approx 1 - e^{-cx}$. Since $1 - e^{-cx} \neq x$, so the mean is not near t. In either case, we can show

$$\Pr\left(B(n-1, 1 - (1 - \frac{c}{n})^t\right) = O(e^{-Ct})$$

for some constant C. Since $t \ge K \log n$ and K large enough, this probability is $o(n^{-22})$ as required.

Let $\alpha = \Pr(C(v) \text{ is not small })$. Then

$$\alpha = \Pr(T_c^{po} \ge S) \approx \Pr(T_c^{po} = \infty) = y.$$

Since no middle ground, not small is the same as giant.

Let $\alpha = \Pr(C(v) \text{ is not small })$. Then

$$\alpha = \Pr(T_c^{po} \ge S) \approx \Pr(T_c^{po} = \infty) = y.$$

Since no middle ground, not small is the same as giant.

 $\quad \ \ \, \Pr(C(v) \text{ is giant }) \approx y.$

Let $\alpha = \Pr(C(v) \text{ is not small })$. Then

$$\alpha = \Pr(T_c^{po} \ge S) \approx \Pr(T_c^{po} = \infty) = y.$$

Since no middle ground, not small is the same as giant.

$$\quad \ \ \, \Pr(C(v) \text{ is giant }) \approx y.$$

Each giant component has size between $(y - \delta)n$ and $(y + \delta)n$.

Let $\alpha = \Pr(C(v) \text{ is not small })$. Then

$$\alpha = \Pr(T_c^{po} \ge S) \approx \Pr(T_c^{po} = \infty) = y.$$

Since no middle ground, not small is the same as giant.

•
$$\Pr(C(v) \text{ is giant }) \approx y.$$

Each giant component has size between $(y - \delta)n$ and $(y + \delta)n$.

It remains to show the giant component is unique and of size about yn.

Topic Course on Probabilistic Methods (week 12)

Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, G = G(n, p), and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+)$ with $p^+ = p + p_1 - pp_1$.

Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, G = G(n, p), and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+)$ with $p^+ = p + p_1 - pp_1$.

Suppose that G has two giant components V_1 and V_2 . Then the probability that V_1 and V_2 is not connected after sprinkling is at most

$$(1-p_1)^{|V_1||V_2|} = o(1).$$

Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, G = G(n, p), and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+)$ with $p^+ = p + p_1 - pp_1$.

Suppose that G has two giant components V_1 and V_2 . Then the probability that V_1 and V_2 is not connected after sprinkling is at most

$$(1-p_1)^{|V_1||V_2|} = o(1).$$

Now G^+ almost surely have a component of size at least $2(y - \delta)n > (y + \delta)n$. It is an awkward component for G^+ . Contradiction!

Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, G = G(n, p), and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+)$ with $p^+ = p + p_1 - pp_1$.

Suppose that G has two giant components V_1 and V_2 . Then the probability that V_1 and V_2 is not connected after sprinkling is at most

$$(1-p_1)^{|V_1||V_2|} = o(1).$$

Now G^+ almost surely have a component of size at least $2(y - \delta)n > (y + \delta)n$. It is an awkward component for G^+ . Contradiction!

Since δ can be made arbitrarily small, the unique giant component has size (1 + o(1))yn.

Now we consider G(n,p) with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

Now we consider G(n,p) with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

Now we consider G(n,p) with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

• C(v) is small if $|C(v)| < K\epsilon^{-2} \ln n$.

Now we consider G(n,p) with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

- C(v) is small if $|C(v)| < K\epsilon^{-2} \ln n$.
- C(v) is **giant** if $||C(v)| yn| < \delta yn$; where $y \approx 2\epsilon$.

Now we consider G(n,p) with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

- C(v) is small if $|C(v)| < K\epsilon^{-2} \ln n$.
- C(v) is **giant** if $||C(v)| yn| < \delta yn$; where $y \approx 2\epsilon$.
- C(v) is **awkward** otherwise.

Now we consider G(n,p) with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

- C(v) is small if $|C(v)| < K\epsilon^{-2} \ln n$.
- C(v) is **giant** if $||C(v)| yn| < \delta yn$; where $y \approx 2\epsilon$.
- C(v) is **awkward** otherwise.

The following statements hold.

- $Pr(\exists an awkward component) = O(n^{-20}).$
- The escape probability $\alpha \approx y \approx 2\epsilon$.
 - Sprinkling works with $p_1 = n^{-4/3}$.

The critical window

Now consider G(n, p) with $p = \frac{1}{n} + \lambda n^{-4/3}$ for a fixed λ . This critical window has been studied by **Bollabás**, Łuczak, Janson, Knuth, Pittel and many others. It requires delicate calculations.

The critical window

Now consider G(n, p) with $p = \frac{1}{n} + \lambda n^{-4/3}$ for a fixed λ . This critical window has been studied by **Bollabás**, Łuczak, Janson, Knuth, Pittel and many others. It requires delicate calculations.

For fixed c > 0, Let X be the number of tree components of size $k = cn^{2/3}$. Then

$$E(X) = \binom{n}{k} k^{k-2} p^{k-1} (1-p)^{k(n-k) + \binom{k}{2} - (k-1)}.$$

The critical window

Now consider G(n, p) with $p = \frac{1}{n} + \lambda n^{-4/3}$ for a fixed λ . This critical window has been studied by **Bollabás**, Łuczak, Janson, Knuth, Pittel and many others. It requires delicate calculations.

For fixed c>0, Let X be the number of tree components of size $k=cn^{2/3}.$ Then

$$E(X) = \binom{n}{k} k^{k-2} p^{k-1} (1-p)^{k(n-k) + \binom{k}{2} - (k-1)}.$$

Recall

$$\ln(1+x) = x - \frac{1}{2}x^2 + O(x^3).$$

Estimation

We estimate

$$\binom{n}{k} \approx \frac{n^k}{(k/e)^k \sqrt{2\pi k}} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right),$$

and

$$\prod_{i=1}^{k-1} \left(1 - \frac{i}{n} \right) = e^{\sum_{i=1}^{k-1} \ln(1 - i/n)}$$
$$= e^{-\sum_{i=1}^{k-1} (i/n + i^2/2n^2 + O(i^3/n^3))}$$
$$= e^{-\frac{k^2}{2n} - \frac{k^3}{6n^2} + o(1)}$$
$$= e^{-\frac{k^2}{2n} - \frac{c^3}{6} + o(1)}.$$

We also estimate

$$p^{k-1} = n^{1-k} (1 + \lambda n^{-1/3})^{k-1}$$

= $n^{1-k} e^{(k-1)\ln(1+\lambda n^{-1/3})}$
= $n^{1-k} e^{k\lambda n^{-1/3} - \frac{1}{2}c\lambda^2 + o(1)},$

We also estimate

$$p^{k-1} = n^{1-k} (1 + \lambda n^{-1/3})^{k-1}$$

= $n^{1-k} e^{(k-1)\ln(1+\lambda n^{-1/3})}$
= $n^{1-k} e^{k\lambda n^{-1/3} - \frac{1}{2}c\lambda^2 + o(1)},$

and

$$(1-p)^{k(n-k)+\binom{k}{2}-(k-1)} = e^{(kn-k^2/2+O(k))\ln(1-p)}$$

= $e^{-(kn-k^2/2+O(k))(p+p^2/2+O(p^3))}$
= $e^{-k+\frac{k^2}{2n}-\frac{\lambda k}{n^{1/3}}+\frac{\lambda c^2}{2}+o(1)}.$

We also estimate

$$p^{k-1} = n^{1-k} (1 + \lambda n^{-1/3})^{k-1}$$

= $n^{1-k} e^{(k-1)\ln(1+\lambda n^{-1/3})}$
= $n^{1-k} e^{k\lambda n^{-1/3} - \frac{1}{2}c\lambda^2 + o(1)},$

and

$$(1-p)^{k(n-k)+\binom{k}{2}-(k-1)} = e^{(kn-k^2/2+O(k))\ln(1-p)}$$

= $e^{-(kn-k^2/2+O(k))(p+p^2/2+O(p^3))}$
= $e^{-k+\frac{k^2}{2n}-\frac{\lambda k}{n^{1/3}}+\frac{\lambda c^2}{2}+o(1)}.$

We get

 $E(X) \approx nk^{-5/2} (2\pi)^{-1/2} e^A,$

where $A = \frac{(\lambda - c)^3 - \lambda^3}{6}$.

Putting together

We get

$$E(X) \approx nk^{-5/2} (2\pi)^{-1/2} e^A,$$

where $A = \frac{(\lambda - c)^3 - \lambda^3}{6}$. For any fixed a, b, λ , let X be the number of tree components of size between $an^{2/3}$ and $bn^{2/3}$. Then

$$\lim_{n \to \infty} \mathcal{E}(X) = \int_{a}^{b} e^{A(c)} c^{-5/2} (2\pi)^{-1/2} dc.$$

Other components

Wright (1977): For a fixed l, there are asymptotically $c_l k^{k-2+(3l/2)}$ connected graphs on k vertices with (k-1+l)-edges.

Other components

Wright (1977): For a fixed l, there are asymptotically $c_l k^{k-2+(3l/2)}$ connected graphs on k vertices with (k-1+l)-edges.

Let $X^{(l)}$ be the number of components on k vertices with k-1+l edges. Then a similar calculation shows

$$\lim_{n \to \infty} \mathcal{E}(X^{(l)}) = \int_{a}^{b} e^{A(c)} c^{-5/2} (2\pi)^{-1/2} (c_l c^{3l/2}) dc.$$

Other components

Wright (1977): For a fixed l, there are asymptotically $c_l k^{k-2+(3l/2)}$ connected graphs on k vertices with (k-1+l)-edges.

Let $X^{(l)}$ be the number of components on k vertices with k-1+l edges. Then a similar calculation shows

$$\lim_{n \to \infty} \mathcal{E}(X^{(l)}) = \int_{a}^{b} e^{A(c)} c^{-5/2} (2\pi)^{-1/2} (c_l c^{3l/2}) dc.$$

Let X^* be the total number of components of size between $an^{2/3}$ and $bn^{2/3}$. Let $g(c) = \sum_{l=0}^{\infty} c_l c^{3l/2}$. Then $\lim_{n \to \infty} E(X^*) = \int_a^b e^{A(c)} c^{-5/2} (2\pi)^{-1/2} g(c) dc.$

Duality

For a fixed k, consider two random graphs G(n, p) and G(n', p'). Assume c = np > 1 and c' = n'p' < 1. We say G(n, p) and G(n', p') are **dual** to each other if $ce^{-c} = c'e^{-c'}$.

Duality

For a fixed k, consider two random graphs G(n, p) and G(n', p'). Assume c = np > 1 and c' = n'p' < 1. We say G(n, p) and G(n', p') are **dual** to each other if $ce^{-c} = c'e^{-c'}$. Let y = 1 - c'/c. Then y satisfies the equation $e^{-cy} = 1 - y$. Hence the size of the giant component in G(n, p) is roughly yn.

Duality

For a fixed k, consider two random graphs G(n, p) and G(n', p'). Assume c = np > 1 and c' = n'p' < 1. We say G(n, p) and G(n', p') are **dual** to each other if $ce^{-c} = c'e^{-c'}$. Let y = 1 - c'/c. Then y satisfies the equation $e^{-cy} = 1 - y$. Hence the size of the giant component in G(n, p) is roughly yn. We have

$$\lim_{n \to \infty} \Pr(C(v) = k \text{ in } G(n, p) | C(v) \text{ is small})$$

$$= \frac{1}{1-y} \frac{e^{-ck}(ck)^{k-1}}{k!} = \frac{e^{-c'k}(c'k)^{k-1}}{k!}$$
$$= \lim_{n' \to \infty} \Pr(C(v) = k \text{ in } G(n', p')).$$

Consider G(n,p) with

$$p = \frac{\log n}{kn} + \frac{(k-1)\log\log n}{kn} + \frac{t}{n} + o(\frac{1}{n}),$$

then there are only trees of size at most k except for the giant component. Let X be the number of trees of k vertices.

Consider G(n, p) with

$$p = \frac{\log n}{kn} + \frac{(k-1)\log\log n}{kn} + \frac{t}{n} + o(\frac{1}{n}),$$

then there are only trees of size at most k except for the giant component. Let X be the number of trees of k vertices.

$$E(X) = {\binom{n}{k}} k^{k-2} p^{k-1} (1-p)^{k(n-k)+\binom{k}{2}-k+1}$$
$$\approx \frac{1}{k^2 p \cdot k!} (knp)^k e^{-knp} \approx \frac{e^{-kt}}{k \cdot k!}.$$

Consider G(n,p) with

$$p = \frac{\log n}{kn} + \frac{(k-1)\log\log n}{kn} + \frac{t}{n} + o(\frac{1}{n}),$$

then there are only trees of size at most k except for the giant component. Let X be the number of trees of k vertices.

$$E(X) = {\binom{n}{k}} k^{k-2} p^{k-1} (1-p)^{k(n-k)+\binom{k}{2}-k+1}$$
$$\approx \frac{1}{k^2 p \cdot k!} (knp)^k e^{-knp} \approx \frac{e^{-kt}}{k \cdot k!}.$$

Further, X follows the Poisson distribution.

For k = 1 and $p = \frac{\log n}{n} + \frac{t}{n} + o(\frac{1}{n})$, G(n, p) consists of a giant component with n - O(1) vertices and bounded number of isolated vertices.

For k = 1 and $p = \frac{\log n}{n} + \frac{t}{n} + o(\frac{1}{n})$, G(n, p) consists of a giant component with n - O(1) vertices and bounded number of isolated vertices.

The distribution of the number of isolated vertices again has a Poisson distribution with mean value e^{-t} .

For k = 1 and $p = \frac{\log n}{n} + \frac{t}{n} + o(\frac{1}{n})$, G(n, p) consists of a giant component with n - O(1) vertices and bounded number of isolated vertices.

The distribution of the number of isolated vertices again has a Poisson distribution with mean value e^{-t} .

• The probability that G(n,p) is connected tends to $e^{-e^{-t}}$.

For k = 1 and $p = \frac{\log n}{n} + \frac{t}{n} + o(\frac{1}{n})$, G(n, p) consists of a giant component with n - O(1) vertices and bounded number of isolated vertices.

- The distribution of the number of isolated vertices again has a Poisson distribution with mean value e^{-t} .
- The probability that G(n,p) is connected tends to $e^{-e^{-t}}$
- As $t \to \infty$, G(n, p) is almost surely connected.

Consider G(n,p) with $p \sim \omega(n) \log n/n$ where $\omega(n) \to \infty$.

Range VI

Consider G(n,p) with $p \sim \omega(n) \log n/n$ where $\omega(n) \to \infty$. In this range, $G_{n,p}$ is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal.

Range VI

Consider G(n,p) with $p \sim \omega(n) \log n/n$ where $\omega(n) \to \infty$. In this range, $G_{n,p}$ is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal. Let $X = d_v$ be the degree of v. By Chernoff's inequality, With probability at least $1 - O(n^{-2})$, we have

$$|X - \mathcal{E}(X)| < 2\sqrt{\omega(n)}\log n.$$

Almost surely, for all v, d_v is in the interval $[d - 2\sqrt{\omega(n)} \log n, d + 2\sqrt{\omega(n)} \log n]$, where d = np is the expected degree.

Subgraphs

Theorem: Let H be a strictly balanced graph with v vertices, m edges, and a automorphisms. Let c > 0 be arbitrary. Then with $p = cn^{-v/m}$,

 $\lim_{n \to \infty} \Pr(G(n, p) \text{ contains no } H) = e^{-c^m/a}.$

Subgraphs

Theorem: Let H be a strictly balanced graph with v vertices, m edges, and a automorphisms. Let c > 0 be arbitrary. Then with $p = cn^{-v/m}$,

$$\lim_{n \to \infty} \Pr(G(n, p) \text{ contains no } H) = e^{-c^m/a}$$

Proof: Let A_{α} , $1 \leq \alpha \leq {n \choose v} v! / a$, range over the edge sets of possible copies of H and B_{α} be the event $A_{\alpha} \subset G(n, p)$. We will apply Janson's Inequality.

$$\lim_{n \to \infty} \mu = \lim_{n \to \infty} {n \choose v} v! p^m / a = c^m / a.$$
$$\lim_{n \to \infty} M = e^{-c^m / a}.$$

Topic Course on Probabilistic Methods (week 12)

Proof

Consider $\Delta = \sum_{\alpha \sim \beta} \Pr(B_{\alpha} \wedge B_{\beta})$. We split the sum according to the number of vertices in $A_{\alpha} \cap A_{\beta}$. For $2 \leq j \leq v$, let f_j be the maximal number of edges in $A_{\alpha} \cap A_{\beta}$ where $\alpha \sim \beta$ and α and β intersect in j vertices. Since H is strictly balanced,

$$\frac{f_j}{j} < \frac{m}{v}.$$

There are $O(n^{2v-j})$ choices of α , β For such α , β ,

$$\Pr(B_{\alpha} \wedge B_{\beta}) = p^{|A_{\alpha} \cup A_{\beta}|} \le p^{2m - f_j}.$$

 $\Delta \le \sum_{j=2}^{v} O(n^{2v-j}) O(n^{(v/m)(2m-f_j)}).$

But

$$2v - j - (v/m)(2m - f_j) = \frac{vf_j}{e} - j < 0.$$

But

$$2v - j - (v/m)(2m - f_j) = \frac{vf_j}{e} - j < 0.$$

Each term is o(1) and hence $\Delta = o(1)$.

$$\Delta \le \sum_{j=2}^{v} O(n^{2v-j}) O(n^{(v/m)(2m-f_j)}).$$

But

$$2v - j - (v/m)(2m - f_j) = \frac{vf_j}{e} - j < 0.$$

Each term is o(1) and hence $\Delta=o(1).$ By Janson's inequality,

$$\lim_{n \to \infty} \Pr(\wedge \bar{B}_{\alpha}) = \lim_{n \to \infty} M = e^{-c^m/a}$$

The proof is finished.

Clique number of $G(n, \frac{1}{2})$

For the rest of slides, we assume $p = \frac{1}{2}$ and G := G(n, 1/2). Let $\omega(G)$ Be the clique number. For a fixed c > 0, let $n, k \to \infty$ so that

$$\binom{n}{k} 2^{-\binom{k}{2}} \to c.$$

Clique number of $G(n, \frac{1}{2})$

For the rest of slides, we assume $p = \frac{1}{2}$ and G := G(n, 1/2). Let $\omega(G)$ Be the clique number. For a fixed c > 0, let $n, k \to \infty$ so that

$$\binom{n}{k} 2^{-\binom{k}{2}} \to c.$$

We get
$$n \sim \frac{k}{e\sqrt{2}} 2^{k/2}$$
 and $k \sim \frac{2\ln n}{\ln 2}$.

Clique number of $G(n, \frac{1}{2})$

For the rest of slides, we assume $p = \frac{1}{2}$ and G := G(n, 1/2). Let $\omega(G)$ Be the clique number. For a fixed c > 0, let $n, k \to \infty$ so that

$$\binom{n}{k} 2^{-\binom{k}{2}} \to c.$$

We get $n \sim \frac{k}{e\sqrt{2}} 2^{k/2}$ and $k \sim \frac{2\ln n}{\ln 2}$. For this k, apply Poisson paradigm to X: the number of k-cliques. We have

$$\Pr(\omega(G < k)) = \Pr(X = 0) = (1 + o(1))e^{-c}.$$

Two points concentration

Let $n_0(k)$ be the minumum n for which $\binom{n}{k}2^{-\binom{k}{2}} \ge 1$. For any $\lambda \in (-\infty, +\infty)$ if $n = n_0(k) \left[1 + \frac{\lambda + o(1)}{k}\right]$, then

$$\binom{n}{k} 2^{-\binom{k}{2}} = \left[1 + \frac{\lambda + o(1)}{k}\right]^k = e^{\lambda} + o(1).$$

and so

$$\Pr(\omega(G) < k) = e^{-e^{\lambda}} + o(1).$$

Note that $e^{-e^{\lambda}}$ ranges from 1 to 0 as λ ranges from $-\infty$ to $+\infty$. Let K be arbitrarily large and set

$$f_k = [n_0(k)(1 - K/k), n_0(k)(1 + K/k)].$$

continues

For $k \ge k_0(K)$, $I_{k-1} \cap I_k = \emptyset$ since $n_0(k+1) \sim \sqrt{2}n_0(k)$. If n lies between the intevals, $I_k < n < I_{k+1}$, then

$$\Pr(\omega(G) = k) \ge e^{-e^{-K}} - e^{-e^{K}} + o(1).$$

With probability near one, we have $\omega(G) = k$.

continues

For $k \ge k_0(K)$, $I_{k-1} \cap I_k = \emptyset$ since $n_0(k+1) \sim \sqrt{2}n_0(k)$. If n lies between the intevals, $I_k < n < I_{k+1}$, then

$$\Pr(\omega(G) = k) \ge e^{-e^{-K}} - e^{-e^{K}} + o(1).$$

With probability near one, we have $\omega(G) = k$. If *n* lies in the inteval I_k , then we still have $I_{k-1} < n < I_{k+1}$, then

$$\Pr(\omega(G) = k - 1 \text{ or } k) \ge e^{-e^{-K}} - e^{-e^{K}} + o(1).$$

With probability near one, we have $\omega(G) = k - 1$ or k.

Topic Course on Probabilistic Methods (week 12)

Chromatic number

Let $f(k) = \binom{n}{k} 2^{-\binom{k}{2}}$ and $k_0 = k_0(n)$ be that value for which $f(k_0 - 1) > 1 > f(k_0).$ Setting $k := k_0(n) - 4$, then $f(k) > n^{3+o(1)}$. We apply the Extended Janson Inquality to estimate $\Pr(\omega(G) < k)$. We have $\frac{\Delta}{\mu^2} = \sum_{i=2}^{k-1} g(i)$, where $g(i) = \frac{\binom{k}{i}\binom{n-k}{k-i}}{\binom{n}{k}} 2^{\binom{i}{2}}$. As $k \sim 2\log_2 n$, $g(2) \sim k^4/n^2$ dominates. Thus,

$$\Pr(\omega(G) < k) < e^{-\mu^2/2\Delta} = e^{-\Theta(n^2/\ln^4 n)}$$

Chromatic number $\chi(G)$

Theorem Bollabás (1988): Almost surely

$$\chi(G) \sim \frac{n}{2\log_2 n}.$$

Chromatic number $\chi(G)$

Theorem Bollabás (1988): Almost surely

$$\chi(G) \sim \frac{n}{2\log_2 n}.$$

Proof: Note that $\alpha(G) = \omega(\overline{G})$ and \overline{G} has the same distribution as G(n, 1/2). We have $\alpha(G) \leq (2 + o(1)) \log_2 n$. Thus almost surely

$$\Pr(\chi(G) \ge \frac{n}{\alpha(G)}) \ge (1 + o(1))\frac{n}{2\log_2 n}$$

reverse direction

Let $m = \lfloor \frac{n}{\ln^2 n} \rfloor$. For any set S of m vertices the restriction $G|_S$ has the distribution $G(m, \frac{1}{2})$. Let k := k(m) as before. Note

$$k \sim 2\log_2 m \sim 2\log_2 n.$$

There are at most $\binom{n}{m} < 2^n = 2^{m^{1+o(1)}}$ such set of S. Hence

$$\Pr(\exists S(\alpha(G|_S) < k)) < 2^{m^{1+o(1)}} e^{-m^{2+o(1)}} = o(1).$$

reverse direction

Let $m = \lfloor \frac{n}{\ln^2 n} \rfloor$. For any set S of m vertices the restriction $G|_S$ has the distribution $G(m, \frac{1}{2})$. Let k := k(m) as before. Note

$$k \sim 2\log_2 m \sim 2\log_2 n.$$

There are at most $\binom{n}{m} < 2^n = 2^{m^{1+o(1)}}$ such set of S. Hence

$$\Pr(\exists S(\alpha(G|_S) < k)) < 2^{m^{1+o(1)}} e^{-m^{2+o(1)}} = o(1).$$

Almost surely every m vertices contain a k-element independent set.

continue

Now we pull out k-element independent sets and give each a distinct color until there are less than m vertices left. Then we given each point a distinct color. We have

$$\chi(G) \leq \left\lceil \frac{n-m}{k} \right\rceil + m$$
$$= (1+o(1))\frac{n}{2\log_2 n} + o\left(\frac{n}{\log_2 n}\right)$$
$$= (1+o(1))\frac{n}{2\log_2 n}.$$

The proof is finished.

