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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Random graphs

■ Supercritical regimes
■ Barely Supercritical Phase
■ The critical window
■ Range V
■ Threshold of connectivity
■ Range VI



Supercritical regimes
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Now we consider G(n, p) for p = c/n, with c > 1 constant.
Let y := y(c) be the positive real solution of e−cy = 1− y.
Choose a large constant K > 0 and a small constant δ > 0.
Let C(v) be the component of G(n, p) containing v.
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Now we consider G(n, p) for p = c/n, with c > 1 constant.
Let y := y(c) be the positive real solution of e−cy = 1− y.
Choose a large constant K > 0 and a small constant δ > 0.
Let C(v) be the component of G(n, p) containing v.

■ C(v) is small if |C(v)| < K lnn.

■ C(v) is giant if ||C(v)| − yn| < δn.

■ C(v) is awkward otherwise.

Claim: The probability of having any awkward component is
o(n−20).
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Proof: We will show for any awkward t,
Pr(|C(v)| = t) = o(n−22). Note

Pr(|C(v)| = t) ≤ Pr(B(n− 1, 1− (1− c

n
)t) = t− 1.
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Pr(|C(v)| = t) ≤ Pr(B(n− 1, 1− (1− c

n
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If t = o(n), then 1− (1− c
n)

t ≈ ct
n . So the mean is about ct,

which is not close to t. If t = xn, then
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t) ≈ 1− e−cx. Since 1− e−cx 6= x, so the mean is

not near t.
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Proof: We will show for any awkward t,
Pr(|C(v)| = t) = o(n−22). Note

Pr(|C(v)| = t) ≤ Pr(B(n− 1, 1− (1− c

n
)t) = t− 1.

If t = o(n), then 1− (1− c
n)

t ≈ ct
n . So the mean is about ct,

which is not close to t. If t = xn, then
1− (1− c

n)
t) ≈ 1− e−cx. Since 1− e−cx 6= x, so the mean is

not near t. In either case, we can show

Pr
(

B(n− 1, 1− (1− c

n
)t
)

= O(e−Ct)

for some constant C. Since t ≥ K log n and K large
enough, this probability is o(n−22) as required.



Escape Probability

Topic Course on Probabilistic Methods (week 12) Linyuan Lu, University of South Carolina – 7 / 28

Let α = Pr(C(v) is not small ). Then

α = Pr(T po
c ≥ S) ≈ Pr(T po

c = ∞) = y.

Since no middle ground, not small is the same as giant.
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Let α = Pr(C(v) is not small ). Then

α = Pr(T po
c ≥ S) ≈ Pr(T po

c = ∞) = y.

Since no middle ground, not small is the same as giant.

■ Pr(C(v) is giant ) ≈ y.

■ Each giant component has size between (y − δ)n and
(y + δ)n.

It remains to show the giant component is unique and of size
about yn.
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Set p1 = n−3/2. Let G1 = G(n, p1), G = G(n, p), and
G+ = G∪G1. Note G

+ ∼ G(n, p+) with p+ = p+ p1− pp1.
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Set p1 = n−3/2. Let G1 = G(n, p1), G = G(n, p), and
G+ = G∪G1. Note G

+ ∼ G(n, p+) with p+ = p+ p1− pp1.

Suppose that G has two giant components V1 and V2. Then
the probability that V1 and V2 is not connected after
sprinkling is at most

(1− p1)
|V1||V2| = o(1).

Now G+ almost surely have a component of size at least
2(y − δ)n > (y + δ)n. It is an awkward component for G+.
Contradiction!

Since δ can be made arbitrarily small, the unique giant
component has size (1 + o(1))yn.
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Now we consider G(n, p) with p = (1 + ǫ)/n where
ǫ = λn−1/3 for λ → ∞. This is similar to the supercritical
phase with extra caution.
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Now we consider G(n, p) with p = (1 + ǫ)/n where
ǫ = λn−1/3 for λ → ∞. This is similar to the supercritical
phase with extra caution.

■ C(v) is small if |C(v)| < Kǫ−2 lnn.

■ C(v) is giant if ||C(v)| − yn| < δyn; where y ≈ 2ǫ.

■ C(v) is awkward otherwise.

The following statements hold.

■ Pr(∃ an awkward component ) = O(n−20).
■ The escape probability α ≈ y ≈ 2ǫ.
■ Sprinkling works with p1 = n−4/3.
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Now consider G(n, p) with p = 1
n + λn−4/3 for a fixed λ.

This critical window has been studied by Bollabás,  Luczak,
Janson, Knuth, Pittel and many others. It requires
delicate calculations.
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Now consider G(n, p) with p = 1
n + λn−4/3 for a fixed λ.

This critical window has been studied by Bollabás,  Luczak,
Janson, Knuth, Pittel and many others. It requires
delicate calculations.

For fixed c > 0, Let X be the number of tree components of
size k = cn2/3. Then

E(X) =

(

n

k

)

kk−2pk−1(1− p)k(n−k)+(k2)−(k−1).

Recall

ln(1 + x) = x− 1

2
x2 +O(x3).
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We estimate

(

n

k

)

≈ nk

(k/e)k
√
2πk

k−1
∏

i=1

(

1− i

n

)

,

and

k−1
∏

i=1

(

1− i

n

)

= e
∑k−1

i=1 ln(1−i/n)

= e−
∑k−1

i=1 (i/n+i2/2n2+O(i3/n3))

= e−
k2

2n− k3

6n2
+o(1)

= e−
k2

2n− c3

6 +o(1).
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We also estimate

pk−1 = n1−k(1 + λn−1/3)k−1

= n1−ke(k−1) ln(1+λn−1/3)

= n1−kekλn
−1/3− 1

2cλ
2+o(1),
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We also estimate

pk−1 = n1−k(1 + λn−1/3)k−1

= n1−ke(k−1) ln(1+λn−1/3)

= n1−kekλn
−1/3− 1

2cλ
2+o(1),

and

(1− p)k(n−k)+(k2)−(k−1) = e(kn−k2/2+O(k)) ln(1−p)

= e−(kn−k2/2+O(k))(p+p2/2+O(p3))

= e
−k+k2

2n− λk

n1/3
+λc2

2 +o(1)
.
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We also estimate

pk−1 = n1−k(1 + λn−1/3)k−1
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2cλ
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.
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We get
E(X) ≈ nk−5/2(2π)−1/2eA,

where A = (λ−c)3−λ3

6 .
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We get
E(X) ≈ nk−5/2(2π)−1/2eA,

where A = (λ−c)3−λ3

6 .

For any fixed a, b, λ, let X be the number of tree
components of size between an2/3 and bn2/3. Then

lim
n→∞

E(X) =

∫ b

a

eA(c)c−5/2(2π)−1/2dc.
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Wright (1977): For a fixed l, there are asymptotically
clk

k−2+(3l/2) connected graphs on k vertices with
(k − 1 + l)-edges.

Let X(l) be the number of components on k vertices with
k − 1 + l edges. Then a similar calculation shows

lim
n→∞

E(X(l)) =

∫ b

a

eA(c)c−5/2(2π)−1/2(clc
3l/2)dc.

Let X∗ be the total number of components of size between
an2/3 and bn2/3. Let g(c) =

∑∞
l=0 clc

3l/2. Then

lim
n→∞

E(X∗) =

∫ b

a

eA(c)c−5/2(2π)−1/2g(c)dc.
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For a fixed k, consider two random graphs G(n, p) and
G(n′, p′). Assume c = np > 1 and c′ = n′p′ < 1. We say
G(n, p) and G(n′, p′) are dual to each other if ce−c = c′e−c′.
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For a fixed k, consider two random graphs G(n, p) and
G(n′, p′). Assume c = np > 1 and c′ = n′p′ < 1. We say
G(n, p) and G(n′, p′) are dual to each other if ce−c = c′e−c′.

Let y = 1− c′/c. Then y satisfies the equation
e−cy = 1− y. Hence the size of the giant component in
G(n, p) is roughly yn. We have

lim
n→∞

Pr(C(v) = k in G(n, p)|C(v) is small)

=
1

1− y

e−ck(ck)k−1

k!
=

e−c′k(c′k)k−1

k!

= lim
n′→∞

Pr(C(v) = k in G(n′, p′)).
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Consider G(n, p) with

p =
log n

kn
+

(k − 1) log log n

kn
+

t

n
+ o(

1

n
),

then there are only trees of size at most k except for the
giant component. Let X be the number of trees of k
vertices.
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Consider G(n, p) with

p =
log n

kn
+

(k − 1) log log n

kn
+

t

n
+ o(

1

n
),

then there are only trees of size at most k except for the
giant component. Let X be the number of trees of k
vertices.

E(X) =

(

n

k

)

kk−2pk−1(1− p)k(n−k)+(k2)−k+1

≈ 1

k2p · k!(knp)
ke−knp ≈ e−kt

k · k! .
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Consider G(n, p) with

p =
log n

kn
+

(k − 1) log log n

kn
+

t

n
+ o(

1

n
),

then there are only trees of size at most k except for the
giant component. Let X be the number of trees of k
vertices.

E(X) =

(

n

k

)

kk−2pk−1(1− p)k(n−k)+(k2)−k+1

≈ 1

k2p · k!(knp)
ke−knp ≈ e−kt

k · k! .

Further, X follows the Poisson distribution.
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For k = 1 and p = log n
n + t

n + o( 1n), G(n, p) consists of a
giant component with n− O(1) vertices and bounded
number of isolated vertices.
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For k = 1 and p = log n
n + t

n + o( 1n), G(n, p) consists of a
giant component with n− O(1) vertices and bounded
number of isolated vertices.

■ The distribution of the number of isolated vertices again
has a Poisson distribution with mean value e−t.

■ The probability that G(n, p) is connected tends to e−e−t

.

■ As t → ∞, G(n, p) is almost surely connected.
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Range VI

Topic Course on Probabilistic Methods (week 12) Linyuan Lu, University of South Carolina – 18 / 28

Consider G(n, p) with p ∼ ω(n) log n/n where ω(n) → ∞.

In this range, Gn,p is not only almost surely connected, but
the degrees of almost all vertices are asymptotically equal.

Let X = dv be the degree of v. By Chernoff’s inequality,
With probability at least 1−O(n−2), we have

|X − E(X)| < 2
√

ω(n) log n.

Almost surely, for all v, dv is in the interval
[d− 2

√

ω(n) log n, d+ 2
√

ω(n) log n], where d = np is the
expected degree.
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Theorem: Let H be a strictly balanced graph with v
vertices, m edges, and a automorphisms. Let c > 0 be
arbitrary. Then with p = cn−v/m,

lim
n→∞

Pr(G(n, p) contains no H) = e−cm/a.
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Theorem: Let H be a strictly balanced graph with v
vertices, m edges, and a automorphisms. Let c > 0 be
arbitrary. Then with p = cn−v/m,

lim
n→∞

Pr(G(n, p) contains no H) = e−cm/a.

Proof: Let Aα, 1 ≤ α ≤
(

n
v

)

v!/a, range over the edge sets
of possible copies of H and Bα be the event Aα ⊂ G(n, p).
We will apply Janson’s Inequality.

lim
n→∞

µ = lim
n→∞

(

n

v

)

v!pm/a = cm/a.

lim
n→∞

M = e−cm/a.
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Consider ∆ =
∑

α∼β Pr(Bα ∧ Bβ). We split the sum
according to the number of vertices in Aα ∩ Aβ. For
2 ≤ j ≤ v, let fj be the maximal number of edges in
Aα ∩ Aβ where α ∼ β and α and β intersect in j vertices.
Since H is strictly balanced,

fj
j

<
m

v
.

There are O(n2v−j) choices of α, β For such α, β,

Pr(Bα ∧Bβ) = p|Aα∪Aβ | ≤ p2m−fj .
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∆ ≤
v

∑

j=2

O(n2v−j)O(n(v/m)(2m−fj)).
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∆ ≤
v

∑

j=2
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2v − j − (v/m)(2m− fj) =
vfj
e

− j < 0.
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∆ ≤
v

∑

j=2

O(n2v−j)O(n(v/m)(2m−fj)).

But

2v − j − (v/m)(2m− fj) =
vfj
e

− j < 0.

Each term is o(1) and hence ∆ = o(1).
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∆ ≤
v

∑

j=2

O(n2v−j)O(n(v/m)(2m−fj)).

But

2v − j − (v/m)(2m− fj) =
vfj
e

− j < 0.

Each term is o(1) and hence ∆ = o(1). By Janson’s
inequality,

lim
n→∞

Pr(∧B̄α) = lim
n→∞

M = e−cm/a.

The proof is finished. �
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For the rest of slides, we assume p = 1
2 and G := G(n, 1/2).

Let ω(G) Be the clique number. For a fixed c > 0, let
n, k → ∞ so that

(

n

k

)

2−(
k
2) → c.



Clique number of G(n, 12)

Topic Course on Probabilistic Methods (week 12) Linyuan Lu, University of South Carolina – 22 / 28

For the rest of slides, we assume p = 1
2 and G := G(n, 1/2).

Let ω(G) Be the clique number. For a fixed c > 0, let
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For the rest of slides, we assume p = 1
2 and G := G(n, 1/2).

Let ω(G) Be the clique number. For a fixed c > 0, let
n, k → ∞ so that

(

n

k

)

2−(
k
2) → c.

We get n ∼ k
e
√
2
2k/2 and k ∼ 2 lnn

ln 2 .

For this k, apply Poisson paradigm to X: the number of
k-cliques. We have

Pr(ω(G < k) = Pr(X = 0) = (1 + o(1))e−c.
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Let n0(k) be the minumum n for which
(

n
k

)

2−(
k
2) ≥ 1. For

any λ ∈ (−∞,+∞) if n = n0(k)
[

1 + λ+o(1)
k

]

, then

(

n

k

)

2−(
k
2) =

[

1 +
λ+ o(1)

k

]k

= eλ + o(1).

and so
Pr(ω(G) < k) = e−eλ + o(1).

Note that e−eλ ranges from 1 to 0 as λ ranges from −∞ to
+∞. Let K be arbitrarily large and set

Ik = [n0(k)(1−K/k), n0(k)(1 +K/k)] .
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For k ≥ k0(K), Ik−1 ∩ Ik = ∅ since n0(k + 1) ∼
√
2n0(k).

■ If n lies between the intevals, Ik < n < Ik+1, then

Pr(ω(G) = k) ≥ e−e−K − e−eK + o(1).

With probability near one, we have ω(G) = k.
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For k ≥ k0(K), Ik−1 ∩ Ik = ∅ since n0(k + 1) ∼
√
2n0(k).

■ If n lies between the intevals, Ik < n < Ik+1, then

Pr(ω(G) = k) ≥ e−e−K − e−eK + o(1).

With probability near one, we have ω(G) = k.

■ If n lies in the inteval Ik, then we still have
Ik−1 < n < Ik+1, then

Pr(ω(G) = k − 1 or k) ≥ e−e−K − e−eK + o(1).

With probability near one, we have ω(G) = k − 1 or k.
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Let f(k) =
(

n
k

)

2−(
k
2) and k0 = k0(n) be that value for which

f(k0 − 1) > 1 > f(k0).

Setting k := k0(n)− 4, then f(k) > n3+o(1).
We apply the Extended Janson Inquality to estimate
Pr(ω(G) < k). We have ∆

µ2 =
∑k−1

i=2 g(i), where

g(i) =
(ki)(

n−k
k−i)

(nk)
2(

i
2). As k ∼ 2 log2 n, g(2) ∼ k4/n2

dominates. Thus,

Pr(ω(G) < k) < e−µ2/2∆ = e−Θ(n2/ ln4 n).
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Theorem Bollabás (1988): Almost surely

χ(G) ∼ n

2 log2 n
.
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Theorem Bollabás (1988): Almost surely

χ(G) ∼ n

2 log2 n
.

Proof: Note that α(G) = ω(Ḡ) and Ḡ has the same
distribution as G(n, 1/2). We have
α(G) ≤ (2 + o(1)) log2 n. Thus almost surely

Pr(χ(G) ≥ n

α(G)
) ≥ (1 + o(1))

n

2 log2 n
.
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Let m = ⌊ n
ln2 n

⌋. For any set S of m vertices the restriction

G|S has the distribution G(m, 12). Let k := k(m) as before.
Note

k ∼ 2 log2m ∼ 2 log2 n.

There are at most
(

n
m

)

< 2n = 2m
1+o(1)

such set of S. Hence

Pr(∃S(α(G|S) < k)) < 2m
1+o(1)

e−m2+o(1)

= o(1).
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Let m = ⌊ n
ln2 n

⌋. For any set S of m vertices the restriction

G|S has the distribution G(m, 12). Let k := k(m) as before.
Note

k ∼ 2 log2m ∼ 2 log2 n.

There are at most
(

n
m

)

< 2n = 2m
1+o(1)

such set of S. Hence

Pr(∃S(α(G|S) < k)) < 2m
1+o(1)

e−m2+o(1)

= o(1).

Almost surely every m vertices contain a k-element
independent set.
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Now we pull out k-element independent sets and give each a
distinct color until there are less than m vertices left. Then
we given each point a distinct color. We have

χ(G) ≤
⌈

n−m

k

⌉

+m

= (1 + o(1))
n

2 log2 n
+ o

(

n

log2 n

)

= (1 + o(1))
n

2 log2 n
.

The proof is finished. �
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