# Topic Course on Probabilistic Methods <br> (Week 10) <br> Poisson Paradigm 

Linyuan Lu<br>University of South Carolina

## Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)


## Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)


## Subtopics

Poisson paradigm

- Poisson Paradigm
- Janson's inequality
- Brun's sieve
- An application-EPIT
- Large deviation (sparse cases)
- Suen's theorem


## Poisson Paradigm

## Let $\left\{B_{i}\right\}_{i_{i I}}$ be a set of bad events. We will estimate $\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)$.

## Poisson Paradigm

## Let $\left\{B_{i}\right\}_{i \in I}$ be a set of bad events. We will estimate $\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)$.

If $B_{i}$ 's are "mostly independent", then one may expect

$$
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \approx \prod_{i \in I} \operatorname{Pr}\left(\bar{B}_{i}\right)
$$

## Poisson Paradigm

Let $\left\{B_{i}\right\}_{i \in I}$ be a set of bad events. We will estimate $\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)$.

- If $B_{i}$ 's are "mostly independent", then one may expect

$$
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \approx \prod_{i \in I} \operatorname{Pr}\left(\bar{B}_{i}\right)
$$

■ Let $X_{i}$ be the random indicator of the event $B_{i}$ and $X=\sum_{i \in I} X_{i}$. If $\operatorname{Pr}\left(B_{i}\right)$ 's are small and "mostly independent", then one may expect $X$ follows "Poisson-like distribution". In particular,

$$
\operatorname{Pr}(X=0) \approx e^{-\mathrm{E}(X)}
$$

## Setting

## - $U$ : a finite universal set.

## Setting

- $U$ : a finite universal set.
$R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.


## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$. $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.


## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.
- $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.
- $i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$.


## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.
- $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.
- $i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$.
- $B_{i}$ : the event $A_{i} \subset R$ for $i \in I$.


## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.
- $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.
- $i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$.
- $B_{i}$ : the event $A_{i} \subset R$ for $i \in I$.
- $X_{i}$ : the indicator random variable for $B_{i}$.


## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.

■ $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.

- $i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$.
- $B_{i}$ : the event $A_{i} \subset R$ for $i \in I$.
- $X_{i}$ : the indicator random variable for $B_{i}$.
- $X:=\sum_{i \in I} X_{i} ; \mu=\mathrm{E}(X)=\sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)$.


## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.
- $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.
- $i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$.
- $B_{i}$ : the event $A_{i} \subset R$ for $i \in I$.
- $X_{i}$ : the indicator random variable for $B_{i}$.
- $X:=\sum_{i \in I} X_{i} ; \mu=\mathrm{E}(X)=\sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)$.

■ $\Delta=\sum_{i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right)$; sum over all ordered pairs $i \sim j$.

## Setting

- $U$ : a finite universal set.
- $R$ : a random subset of $U$ given by $\operatorname{Pr}(r \in R)=p_{r}$.
- $\left\{A_{i}\right\}_{i \in I}$ : a family of subsets of $U$.
- $i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$.
- $B_{i}$ : the event $A_{i} \subset R$ for $i \in I$.
- $X_{i}$ : the indicator random variable for $B_{i}$.
- $X:=\sum_{i \in I} X_{i} ; \mu=\mathrm{E}(X)=\sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)$.
- $\Delta=\sum_{i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right)$; sum over all ordered pairs $i \sim j$.

$$
M=\prod_{i \in I} \operatorname{Pr}\left(\bar{B}_{i}\right) .
$$

## Janson inequality

## The Janson inequality: Assume all $\operatorname{Pr}\left(B_{i}\right) \leq \epsilon$. Then

$$
M \leq \operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \leq M e^{\frac{\Delta}{2(1-\epsilon)}},
$$

and, further,

$$
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \leq e^{-\mu+\frac{\Delta}{2}} .
$$

## Janson inequality

The Janson inequality: Assume all $\operatorname{Pr}\left(B_{i}\right) \leq \epsilon$. Then

$$
M \leq \operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \leq M e^{\frac{\Delta}{2(1-\epsilon)}},
$$

and, further,

$$
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \leq e^{-\mu+\frac{\Delta}{2}} .
$$

The Extended Janson inequality: If further $\Delta \geq \mu$, then

$$
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \leq e^{\frac{-\mu^{2}}{2 \Delta}} .
$$

## Proof

## Proof given by Boppana and Spencer: We will use the following correlation inequality.

■ For all $J \subset I, i \notin J$,

$$
\operatorname{Pr}\left(B_{i} \mid \wedge_{j \in J} \bar{B}_{j}\right) \leq \operatorname{Pr}\left(B_{i}\right) .
$$

■ For $J \subset I, i, k \notin J$,

$$
\operatorname{Pr}\left(B_{i} \mid B_{k} \wedge \wedge_{j \in J} \bar{B}_{j}\right) \leq \operatorname{Pr}\left(B_{i} \mid B_{k}\right) .
$$

## Proof

## Proof given by Boppana and Spencer: We will use the

 following correlation inequality.■ For all $J \subset I, i \notin J$,

$$
\operatorname{Pr}\left(B_{i} \mid \wedge_{j \in J} \bar{B}_{j}\right) \leq \operatorname{Pr}\left(B_{i}\right) .
$$

■ For $J \subset I, i, k \notin J$,

$$
\operatorname{Pr}\left(B_{i} \mid B_{k} \wedge \wedge_{j \in J} \bar{B}_{j}\right) \leq \operatorname{Pr}\left(B_{i} \mid B_{k}\right) .
$$

Order the index set $I=\{1,2, \ldots, m\}$.

$$
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)=\prod_{i=1}^{m} \operatorname{Pr}\left(\bar{B}_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) \geq \prod_{i=1}^{m} \operatorname{Pr}\left(\bar{B}_{i}\right) .
$$

## Continue

For a given $i$ renumber, for convenience, so that $i \sim j$ for $1 \leq j \leq d$ and not for $d+1 \leq j<i$. Let $A=B_{i}$, $B=\bar{B}_{1} \wedge \cdots \wedge \bar{B}_{d}$, and $C=\bar{B}_{d+1} \wedge \cdots \wedge \bar{B}_{i-1}$,

$$
\begin{aligned}
\operatorname{Pr}\left(B_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) & =\operatorname{Pr}(A \mid B \wedge C) \\
& \geq \operatorname{Pr}(A \wedge B \mid C) \\
& =\operatorname{Pr}(A \mid C) \operatorname{Pr}(B \mid A \wedge C)
\end{aligned}
$$

Note $\operatorname{Pr}(A \mid C)=\operatorname{Pr}(A)$ and
$\operatorname{Pr}(B \mid A \wedge C) \geq 1-\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \mid B_{i} \wedge C\right) \geq 1-\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \mid B_{i}\right)$.

## Continue

For a given $i$ renumber, for convenience, so that $i \sim j$ for $1 \leq j \leq d$ and not for $d+1 \leq j<i$. Let $A=B_{i}$, $B=\bar{B}_{1} \wedge \cdots \wedge \bar{B}_{d}$, and $C=\bar{B}_{d+1} \wedge \cdots \wedge \bar{B}_{i-1}$,

$$
\begin{aligned}
\operatorname{Pr}\left(B_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) & =\operatorname{Pr}(A \mid B \wedge C) \\
& \geq \operatorname{Pr}(A \wedge B \mid C) \\
& =\operatorname{Pr}(A \mid C) \operatorname{Pr}(B \mid A \wedge C)
\end{aligned}
$$

Note $\operatorname{Pr}(A \mid C)=\operatorname{Pr}(A)$ and
$\operatorname{Pr}(B \mid A \wedge C) \geq 1-\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \mid B_{i} \wedge C\right) \geq 1-\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \mid B_{i}\right)$.

$$
\operatorname{Pr}\left(B_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) \geq \operatorname{Pr}\left(B_{i}\right)-\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right)
$$

## Continue

$$
\begin{aligned}
\operatorname{Pr}\left(\bar{B}_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) & \leq \operatorname{Pr}\left(\bar{B}_{i}\right)+\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right) \\
& \leq \operatorname{Pr}\left(\bar{B}_{i}\right)\left(1+\frac{1}{1-\epsilon} \sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right)\right) \\
& \leq \operatorname{Pr}\left(\bar{B}_{i}\right) \frac{1}{e^{1-\epsilon} \sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right)} .
\end{aligned}
$$

## Continue

$$
\begin{aligned}
\operatorname{Pr}\left(\bar{B}_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) & \leq \operatorname{Pr}\left(\bar{B}_{i}\right)+\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right) \\
& \leq \operatorname{Pr}\left(\bar{B}_{i}\right)\left(1+\frac{1}{1-\epsilon} \sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right)\right) \\
& \leq \operatorname{Pr}\left(\bar{B}_{i}\right) e^{\frac{1}{1-\epsilon} \sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right)}
\end{aligned}
$$

Plug it into $\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)=\prod_{i=1}^{m} \operatorname{Pr}\left(\bar{B}_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right)$; we get the first inequality. The second inequality use the following estimation.

$$
\begin{aligned}
\operatorname{Pr}\left(\bar{B}_{i} \mid \wedge_{1 \leq j<i} \bar{B}_{j}\right) & \leq \operatorname{Pr}\left(\bar{B}_{i}\right)+\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right) \\
& \leq e^{-\operatorname{Pr}\left(B_{i}\right)+\sum_{j=1}^{d} \operatorname{Pr}\left(B_{j} \wedge B_{i}\right)} .
\end{aligned}
$$

## Proof of second Theorem

From the Jansen inequality, we have

$$
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)\right) \geq \sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)-\frac{1}{2} \sum_{i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right)
$$

## Proof of second Theorem

From the Jansen inequality, we have

$$
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)\right) \geq \sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)-\frac{1}{2} \sum_{i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right)
$$

For any set $S \subset I$, the same inequality applied to $\left\{B_{i}\right\}_{i \in S}$ :

$$
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right) \geq \sum_{i \in S} \operatorname{Pr}\left(B_{i}\right)-\frac{1}{2} \sum_{i, j \in S, i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right) .
$$

## Proof of second Theorem

From the Jansen inequality, we have

$$
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)\right) \geq \sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)-\frac{1}{2} \sum_{i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right)
$$

For any set $S \subset I$, the same inequality applied to $\left\{B_{i}\right\}_{i \in S}$ :

$$
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right) \geq \sum_{i \in S} \operatorname{Pr}\left(B_{i}\right)-\frac{1}{2} \sum_{i, j \in S, i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right) .
$$

Now take $S$ be a random subset of $I$ given by
$\operatorname{Pr}(i \in S)=p$, and take the expectation.

$$
E\left[-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right)\right] \geq p \mu-p^{2} \frac{\Delta}{2} .
$$

## Continue

Now choose $p=\mu / \Delta$.

$$
E\left[-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right)\right] \geq \frac{\mu^{2}}{2 \Delta}
$$

## Continue

Now choose $p=\mu / \Delta$.

$$
E\left[-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right)\right] \geq \frac{\mu^{2}}{2 \Delta}
$$

Then there is a specific $S \subset I$ for which

$$
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right) \geq \frac{\mu^{2}}{2 \Delta}
$$

## Continue

Now choose $p=\mu / \Delta$.

$$
E\left[-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right)\right] \geq \frac{\mu^{2}}{2 \Delta}
$$

Then there is a specific $S \subset I$ for which

$$
\begin{gathered}
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right) \geq \frac{\mu^{2}}{2 \Delta} . \\
\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right) \leq e^{-\frac{\mu^{2}}{2 \Delta}}
\end{gathered}
$$

## Continue

Now choose $p=\mu / \Delta$.

$$
E\left[-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right)\right] \geq \frac{\mu^{2}}{2 \Delta}
$$

Then there is a specific $S \subset I$ for which

$$
\begin{gathered}
-\ln \left(\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right)\right) \geq \frac{\mu^{2}}{2 \Delta} . \\
\operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right) \leq e^{-\frac{\mu^{2}}{2 \Delta}} . \\
\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right) \leq \operatorname{Pr}\left(\wedge_{i \in S} \bar{B}_{i}\right) \leq e^{-\frac{\mu^{2}}{2 \Delta}} .
\end{gathered}
$$

$\square$

## Brun's sieve

- $X_{i}$ : the indicator random variable for $B_{i}$, for $i \in I$. $X:=\sum_{i=1}^{m} X_{i}$. $m=m(n), B_{i}=B_{i}(n)$, and $X=X(n)$.
Let

$$
S^{(r)}=\sum \operatorname{Pr}\left(B_{i_{1}} \wedge \cdots \wedge B_{i_{r}}\right),
$$

where the sum is over all sets $\left\{i_{1}, \ldots, i_{r}\right\} \subset\{1,2 \ldots, m\}$.
Let

$$
X^{(r)}=X(X-1) \cdots(X-r+1)
$$

## Brun's sieve

- $X_{i}$ : the indicator random variable for $B_{i}$, for $i \in I$.

■ $X:=\sum_{i=1}^{m} X_{i}$.
■ $m=m(n), B_{i}=B_{i}(n)$, and $X=X(n)$.
■ Let

$$
S^{(r)}=\sum \operatorname{Pr}\left(B_{i_{1}} \wedge \cdots \wedge B_{i_{r}}\right),
$$

where the sum is over all sets
$\left\{i_{1}, \ldots, i_{r}\right\} \subset\{1,2 \ldots, m\}$.
Let

$$
X^{(r)}=X(X-1) \cdots(X-r+1)
$$

By inclusion-exclusion principle,

$$
\operatorname{Pr}(X=0)=\operatorname{Pr}\left(\bar{B}_{1} \wedge \cdots \wedge \bar{B}_{m}\right)=\sum_{r \geq 0}(-1)^{r} S^{(r)}
$$

## Brun's sieve

Theorem: Suppose there is a constant $\mu$ so that for every fixed $r$,

$$
\mathrm{E}\binom{X}{r}=S^{(r)} \rightarrow \frac{\mu^{r}}{r!} .
$$

Then

$$
\operatorname{Pr}(X=0) \rightarrow e^{-\mu},
$$

and for every $t$

$$
\operatorname{Pr}(X=t) \rightarrow \frac{\mu^{t}}{t!} e^{-\mu}
$$

## Proof

Proof: We only prove the case $t=0$. Fix $\epsilon>0$. Choose $s$ so that

$$
\left|\sum_{r=0}^{2 s}(-1)^{r} \frac{\mu^{r}}{r!}-e^{-\mu}\right| \leq \frac{\epsilon}{2} .
$$

Select $n_{0}$ so that for $n \geq n_{0}$,

$$
\left|S^{(r)}-\frac{\mu^{r}}{r!}\right| \leq \frac{\epsilon}{2 s(2 s+1)}
$$

for $0 \leq r \leq 2 s$.

## Continue

For such $n$,

$$
\begin{aligned}
\operatorname{Pr}[X=0] & \leq \sum_{r=0}^{2 s}(-1)^{r} S^{(r)} \\
& \leq \sum_{r=0}^{2 s}(-1)^{r} \frac{\mu^{r}}{r!}+\frac{\epsilon}{2} \\
& \leq e^{-\mu}+\epsilon
\end{aligned}
$$

## Continue

For such $n$,

$$
\begin{aligned}
\operatorname{Pr}[X=0] & \leq \sum_{r=0}^{2 s}(-1)^{r} S^{(r)} \\
& \leq \sum_{r=0}^{2 s}(-1)^{r} \frac{\mu^{r}}{r!}+\frac{\epsilon}{2} \\
& \leq e^{-\mu}+\epsilon
\end{aligned}
$$

Similarly, taking the sum to $2 s+1$, we can find $n_{0}$ so that for $n \geq n_{0}$,

$$
\operatorname{Pr}[X=0] \geq e^{-\mu}-\epsilon
$$

As $\epsilon$ was arbitrary $\operatorname{Pr}(X=0) \rightarrow e^{-\mu}$.

## An application

Let $G=G(n, p)$, and EPIT represent the statement that every vertex lies in a triangle.
Theorem (a special case of Spencer's Theorem): Let $c>0$ be fixed and let $p=p(n), \mu=\mu(n)$ satisfy

$$
\begin{aligned}
\binom{n-1}{2} p^{3} & =\mu \\
e^{-\mu} & =\frac{c}{n}
\end{aligned}
$$

Then
$\lim _{n \rightarrow \infty} \operatorname{Pr}(G(n, p)$ satisfies $E P I T)=e^{-c}$.

## Proof

First fix $x \in V(G)$. For each unordered $y, z \neq x$ let $B_{x y z}$ be the event that $\{x, y, z\}$ is a triangle of $G$. Let $C_{x}$ be the event $\wedge_{y, z} \bar{B}_{x y z}$ and $X_{x}$ the corresponding indicator random variable. Apply Janson's Inequality to bound $\mathrm{E}\left(X_{x}\right)=\operatorname{Pr}\left(\wedge_{y, z} \bar{B}_{x y z}\right)$.

## Proof

First fix $x \in V(G)$. For each unordered $y, z \neq x$ let $B_{x y z}$ be the event that $\{x, y, z\}$ is a triangle of $G$. Let $C_{x}$ be the event $\wedge_{y, z} \bar{B}_{x y z}$ and $X_{x}$ the corresponding indicator random variable. Apply Janson's Inequality to bound $\mathrm{E}\left(X_{x}\right)=\operatorname{Pr}\left(\wedge_{y, z} \bar{B}_{x y z}\right)$.

$$
\Delta=\sum_{y, z, z^{\prime}} \operatorname{Pr}\left(B_{x y z} \wedge B_{x y z^{\prime}}\right)=O\left(n^{3} p^{5}\right)=o(1)
$$

since $p=n^{-2 / 3+o(1)}$.

## Proof

First fix $x \in V(G)$. For each unordered $y, z \neq x$ let $B_{x y z}$ be the event that $\{x, y, z\}$ is a triangle of $G$. Let $C_{x}$ be the event $\wedge_{y, z} \bar{B}_{x y z}$ and $X_{x}$ the corresponding indicator random variable. Apply Janson's Inequality to bound $\mathrm{E}\left(X_{x}\right)=\operatorname{Pr}\left(\wedge_{y, z} \bar{B}_{x y z}\right)$.

$$
\Delta=\sum_{y, z, z^{\prime}} \operatorname{Pr}\left(B_{x y z} \wedge B_{x y z^{\prime}}\right)=O\left(n^{3} p^{5}\right)=o(1)
$$

since $p=n^{-2 / 3+o(1)}$. Thus

$$
\mathrm{E}\left(X_{x}\right) \approx e^{-\mu}=\frac{c}{n}
$$

## continue

Let $X=\sum_{x} X_{x}$, which is the number of vertices $x$ no lying a triangle.

$$
\mathrm{E}(X)=\sum_{x} \mathrm{E}\left(X_{x}\right) \rightarrow c
$$

We need to show that the Poisson Paradigm applies to $X$.

## continue

Let $X=\sum_{x} X_{x}$, which is the number of vertices $x$ no lying a triangle.

$$
\mathrm{E}(X)=\sum_{x} \mathrm{E}\left(X_{x}\right) \rightarrow c
$$

We need to show that the Poisson Paradigm applies to $X$.
Fix $r$ and consider

$$
\mathrm{E}\binom{X}{r}=S^{(r)}=\sum \operatorname{Pr}\left(C_{x_{1}} \wedge \cdots \wedge C_{x_{r}}\right),
$$

where the sum is over all sets $\left\{x_{1}, \ldots, x_{r}\right\}$.

## continue

Let $X=\sum_{x} X_{x}$, which is the number of vertices $x$ no lying a triangle.

$$
\mathrm{E}(X)=\sum_{x} \mathrm{E}\left(X_{x}\right) \rightarrow c
$$

We need to show that the Poisson Paradigm applies to $X$.
Fix $r$ and consider

$$
\mathrm{E}\binom{X}{r}=S^{(r)}=\sum \operatorname{Pr}\left(C_{x_{1}} \wedge \cdots \wedge C_{x_{r}}\right),
$$

where the sum is over all sets $\left\{x_{1}, \ldots, x_{r}\right\}$. Note

$$
C_{x_{1}} \wedge \cdots \wedge C_{x_{r}}=\wedge_{1 \leq i \leq r, y, z} \overline{B_{x_{i} y z}} .
$$

## Continue

We apply Janson's Inequality again.
$\sum \operatorname{Pr}\left(B_{x_{i} y z}\right)=p^{3}\left(r\binom{n-1}{2}-O(n)\right)=r \mu+O\left(n^{-1+o(1)}\right)$.
As before $\Delta$ is $p^{5}$ times the number of pairs $x_{i} y z \sim x_{j} y z$; $\Delta=O\left(n^{3} p^{5}\right)=o(1)$.

## Continue

We apply Janson's Inequality again.
$\sum \operatorname{Pr}\left(B_{x_{i} y z}\right)=p^{3}\left(r\binom{n-1}{2}-O(n)\right)=r \mu+O\left(n^{-1+o(1)}\right)$.
As before $\Delta$ is $p^{5}$ times the number of pairs $x_{i} y z \sim x_{j} y z$; $\Delta=O\left(n^{3} p^{5}\right)=o(1)$.

$$
\begin{aligned}
& \operatorname{Pr}\left(C_{x_{1}} \wedge \cdots \wedge C_{x_{r}}\right) \sim e^{-r \mu} \\
& \mathrm{E}\binom{X}{r} \approx\binom{n}{r} e^{-r \mu} \approx \frac{c^{r}}{r!} .
\end{aligned}
$$

## Continue

We apply Janson's Inequality again.
$\sum \operatorname{Pr}\left(B_{x_{i} y z}\right)=p^{3}\left(r\binom{n-1}{2}-O(n)\right)=r \mu+O\left(n^{-1+o(1)}\right)$.
As before $\Delta$ is $p^{5}$ times the number of pairs $x_{i} y z \sim x_{j} y z$; $\Delta=O\left(n^{3} p^{5}\right)=o(1)$.

$$
\begin{aligned}
& \operatorname{Pr}\left(C_{x_{1}} \wedge \cdots \wedge C_{x_{r}}\right) \sim e^{-r \mu} \\
& \mathrm{E}\binom{X}{r} \approx\binom{n}{r} e^{-r \mu} \approx \frac{c^{r}}{r!} .
\end{aligned}
$$

Applying Brun's Sieve method, we have $\operatorname{Pr}(X=0) \rightarrow e^{-c}$.

## Large deviations

Let $X=\sum_{i, j} t_{x i} t_{x j} t_{i j}$ be the number of triangles containing $x$ in $G(n, p)$. Let $\mu=\mathrm{E}(X)$.

- Kim-Vu's inequality implies " if $\mu \gg \ln ^{6} n$, then with probability $1-o(1),(1-\epsilon) \mu \leq X \leq(1+\epsilon) \mu$."


## Large deviations

Let $X=\sum_{i, j} t_{x i} t_{x j} t_{i j}$ be the number of triangles containing $x$ in $G(n, p)$. Let $\mu=\mathrm{E}(X)$.

■ Kim-Vu's inequality implies " if $\mu \gg \ln ^{6} n$, then with probability $1-o(1),(1-\epsilon) \mu \leq X \leq(1+\epsilon) \mu$."

- With disjoint family (of Poisson paradigm), one can lower the condition to $\mu \gg \ln n$.


## Disjoint family

For a fixed random set $R$, an index $J \subseteq I$ is a disjoint family (disfam) if

- $\quad B_{j} \subset R$ for every $j \in J$.
- For no $j, j^{\prime} \in J$ is $j \sim j^{\prime}$.


## Disjoint family

For a fixed random set $R$, an index $J \subseteq I$ is a disjoint family (disfam) if

- $\quad B_{j} \subset R$ for every $j \in J$.
- For no $j, j^{\prime} \in J$ is $j \sim j^{\prime}$.
$J$ is a maximal disjoint family (maxdisfam) if in addition
■ If $j^{\prime} \notin J$ and $B_{j^{\prime}}$ the $j \sim j^{\prime}$ for some $j \in J$.


## Disjoint family

For a fixed random set $R$, an index $J \subseteq I$ is a disjoint family (disfam) if

- $\quad B_{j} \subset R$ for every $j \in J$.
- For no $j, j^{\prime} \in J$ is $j \sim j^{\prime}$.
$J$ is a maximal disjoint family (maxdisfam) if in addition
■ If $j^{\prime} \notin J$ and $B_{j^{\prime}}$ the $j \sim j^{\prime}$ for some $j \in J$.


## Lemma 8.4.1:

$\operatorname{Pr}($ there exists a maxdisfam $J,|J|=s) \leq \frac{\mu^{s}}{s!}$.

## Disjoint family

For a fixed random set $R$, an index $J \subseteq I$ is a disjoint family (disfam) if

- $\quad B_{j} \subset R$ for every $j \in J$.
- For no $j, j^{\prime} \in J$ is $j \sim j^{\prime}$.
$J$ is a maximal disjoint family (maxdisfam) if in addition
- If $j^{\prime} \notin J$ and $B_{j^{\prime}}$ the $j \sim j^{\prime}$ for some $j \in J$.


## Lemma 8.4.1:

$\operatorname{Pr}($ there exists a maxdisfam $J,|J|=s) \leq \frac{\mu^{s}}{s!}$.
Lemma 8.4.2: Let $\nu=\max _{j \in I} \sum_{i \sim j} \operatorname{Pr}\left(B_{i}\right)$. Then
$\operatorname{Pr}($ there exists a maxdisfam $J,|J|=s) \leq \frac{\mu^{s}}{s!} e^{-\mu} e^{s \nu} e^{\Delta / 2}$.

## Proof of Lemma 8.4.1

Let $\sum^{*}$ denote the sum over all $s$-sets $J \subseteq I$ with no $j \sim j^{\prime}$. Let $\sum^{o}$ denote the sum over ordered distinct $s$-tuples. Then
$\operatorname{Pr}($ there exists a maxdisfam $J,|J|=s)$

$$
\leq \sum^{*} \operatorname{Pr}\left(\wedge_{j \in J} B_{j}\right)
$$

$$
=\sum^{*} \prod_{j \in J} \operatorname{Pr}\left(B_{j}\right) \leq \frac{1}{s!} \sum^{o} \operatorname{Pr}\left(B_{j_{1}}\right) \cdots \operatorname{Pr}\left(B_{j_{s}}\right)
$$

$$
\leq \frac{1}{s!}\left(\sum_{i \in I} \operatorname{Pr}\left(B_{i}\right)\right)^{s}=\frac{\mu^{s}}{s!}
$$

## Proof of Lemma 8.4.2

Let $\mu_{s}$ denote the minimum, over all $j_{1}, \ldots, j_{s} \in I$ of
$\sum \operatorname{Pr}\left(B_{i}\right)$, the sum over all $i \in I$ except those $i$ with $i \sim j_{l}$ for some $1 \leq l \leq s$. We have $\mu_{s} \geq \mu-s \nu$.

$$
\operatorname{Pr}(J \text { maxdisfam })=\operatorname{Pr}(J \text { disfam }) \operatorname{Pr}\left(\wedge^{*} \bar{B}_{i}\right) .
$$

Applying Janson's inequality, we get

$$
\operatorname{Pr}\left(\wedge^{*} \bar{B}_{i}\right) \leq e^{-\mu_{s}} e^{\Delta / 2}
$$

$$
\begin{aligned}
\sum^{*} \operatorname{Pr}(J \text { maxdisfam }) & \leq e^{-\mu_{s}} e^{\Delta / 2} \sum^{*} \operatorname{Pr}(J \text { disfam }) \\
& \leq \frac{\mu^{s}}{s!} e^{-\mu_{s}} e^{\Delta / 2} \leq \frac{\mu^{s}}{s!} e^{-\mu} e^{s \nu} e^{\Delta / 2}
\end{aligned}
$$

## Conclusion

Let $P$ be the Poisson distribution with mean $\mu$. When $\mu \gg \ln n, \Delta=o(1)$, and $\nu \mu=o(1)$, then

## Conclusion

Let $P$ be the Poisson distribution with mean $\mu$. When $\mu \gg \ln n, \Delta=o(1)$, and $\nu \mu=o(1)$, then
$\operatorname{Pr}($ there exists a maxdisfam $J,|J| \leq \mu(1-\epsilon))$

$$
\leq(1+o(1)) \operatorname{Pr}(P \leq \mu(1-\epsilon)) ;
$$

$\operatorname{Pr}($ there exists a maxdisfam $J, \mu(1+\epsilon) \leq|J| \leq 3 \mu)$

$$
\leq(1+o(1)) \operatorname{Pr}((1+\epsilon) \mu \leq P \leq 3 \mu) ;
$$

$\operatorname{Pr}($ there exists a maxdisfam $J,|J| \geq 3 \mu) \leq \sum_{s=3 \mu}^{\infty} \frac{\mu^{s}}{s!}=o\left(n^{-1}\right)$.

## Conclusion

Let $P$ be the Poisson distribution with mean $\mu$. When $\mu \gg \ln n, \Delta=o(1)$, and $\nu \mu=o(1)$, then
$\operatorname{Pr}($ there exists a maxdisfam $J,|J| \leq \mu(1-\epsilon))$

$$
\leq(1+o(1)) \operatorname{Pr}(P \leq \mu(1-\epsilon)) ;
$$

$\operatorname{Pr}($ there exists a maxdisfam $J, \mu(1+\epsilon) \leq|J| \leq 3 \mu)$

$$
\leq(1+o(1)) \operatorname{Pr}((1+\epsilon) \mu \leq P \leq 3 \mu) ;
$$

$\operatorname{Pr}($ there exists a maxdisfam $J,|J| \geq 3 \mu) \leq \sum_{s=3 \mu}^{\infty} \frac{\mu^{s}}{s!}=o\left(n^{-1}\right)$.
With probability $1-o\left(n^{-1}\right)$, every maxdisfam $J$ has size between $(1-\epsilon) \mu$ and $(1+\epsilon) \mu$.

## Application

Let $X$ be the number of triangles containing $x$ in $G(n, p)$. Let $\mu=\mathrm{E}(X) \sim \frac{1}{2} n^{2} p^{3}$. Assume $\mu \gg \ln n$.

## Application

Let $X$ be the number of triangles containing $x$ in $G(n, p)$. Let $\mu=\mathrm{E}(X) \sim \frac{1}{2} n^{2} p^{3}$. Assume $\mu \gg \ln n$.
We have $\Delta \leq n^{3} p^{5}=o(1)$ and $\mu \nu=n^{3} p^{5}=o(1)$. Thus, with probability $1-o\left(n^{-1}\right)$, every maxdisfam $J$ has size between $(1-\epsilon) \mu$ and $(1+\epsilon) \mu$.

## Application

Let $X$ be the number of triangles containing $x$ in $G(n, p)$. Let $\mu=\mathrm{E}(X) \sim \frac{1}{2} n^{2} p^{3}$. Assume $\mu \gg \ln n$.
We have $\Delta \leq n^{3} p^{5}=o(1)$ and $\mu \nu=n^{3} p^{5}=o(1)$. Thus, with probability $1-o\left(n^{-1}\right)$, every maxdisfam $J$ has size between $(1-\epsilon) \mu$ and $(1+\epsilon) \mu$.
Construct a graph $H=(V, E)$ with $V=\{$ all triangles containing $x\}$ and two triangles is adjacent if they share an edge. The with probability $1-o(1)$, each vertex $x y z$ has degree at most 9 and no set of four disjoint edges. This implies, for any $J,|J| \geq X-27$. Thus,

$$
X \leq(1+\epsilon) \mu+27 \leq\left(1+\epsilon^{\prime}\right) \mu
$$

## Generalization

A sufficient condition for Janson's Inequality:
■ $I$ : a dependency digraph; if for each $i \in I$ the event $B_{i}$ is mutually independent of $\left\{B_{j}: i \nsim j\right\}$.

- $\Delta:=\sum_{i \sim j} \operatorname{Pr}\left(B_{i} \wedge B_{j}\right)$.
- For all $J \subset I, i \notin J$,

$$
\operatorname{Pr}\left(B_{i} \mid \wedge_{j \in J} \bar{B}_{j}\right) \leq \operatorname{Pr}\left(B_{i}\right)
$$

■ For $J \subset I, i, k \notin J$,

$$
\operatorname{Pr}\left(B_{i} \mid B_{k} \wedge \wedge_{j \in J} \bar{B}_{j}\right) \leq \operatorname{Pr}\left(B_{i} \mid B_{k}\right) .
$$

Then Janson's inequality holds.

## Suen's theorem

An binary relation $\sim$ on $I$ is superdenpendency digraph if the following holds:
Suppose that $J_{1}, J_{2} \subset I$ are disjoint subsets so that there is no edge between $J_{1}$ and $J_{2}$. Let $B^{1}$ be any Boolean combination of the events $\left\{B_{j}\right\}_{j \in J_{1}}$ and $B^{2}$ be any Boolean combination of the events $\left\{B_{j}\right\}_{j \in J_{2}}$. Then $B^{1}$ and $B^{2}$ are independent.

## Suen's theorem

An binary relation $\sim$ on $I$ is superdenpendency digraph if the following holds:
Suppose that $J_{1}, J_{2} \subset I$ are disjoint subsets so that there is no edge between $J_{1}$ and $J_{2}$. Let $B^{1}$ be any Boolean combination of the events $\left\{B_{j}\right\}_{j \in J_{1}}$ and $B^{2}$ be any Boolean combination of the events $\left\{B_{j}\right\}_{j \in J_{2}}$. Then $B^{1}$ and $B^{2}$ are independent.
Theorem [Suen]: Under the above conditions,

$$
\left|\operatorname{Pr}\left(\wedge_{i \in I} \bar{B}_{i}\right)-M\right| \leq M\left(e^{\sum_{i \sim j} y(i, j)}-1\right)
$$

where

$$
y_{i, j}=\left(\operatorname{Pr}\left(B_{i} \wedge B_{j}\right)+\operatorname{Pr}\left(B_{i}\right) \operatorname{Pr}\left(B_{j}\right)\right) \prod_{l \sim i \text { or } l \sim j}\left(1-\operatorname{Pr}\left(B_{l}\right)\right)^{-1} .
$$

