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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Poisson paradigm

■ Poisson Paradigm
■ Janson’s inequality
■ Brun’s sieve
■ An application–EPIT
■ Large deviation (sparse cases)
■ Suen’s theorem



Poisson Paradigm
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Let {Bi}i∈I be a set of bad events. We will estimate
Pr(∧i∈IB̄i).
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Pr(∧i∈IB̄i).

■ If Bi’s are “mostly independent”, then one may expect

Pr(∧i∈IB̄i) ≈
∏

i∈I

Pr(B̄i).
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Let {Bi}i∈I be a set of bad events. We will estimate
Pr(∧i∈IB̄i).

■ If Bi’s are “mostly independent”, then one may expect

Pr(∧i∈IB̄i) ≈
∏

i∈I

Pr(B̄i).

■ Let Xi be the random indicator of the event Bi and
X =

∑

i∈I Xi. If Pr(Bi)’s are small and “mostly
independent”, then one may expect X follows
“Poisson-like distribution”. In particular,

Pr(X = 0) ≈ e−E(X).
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■ U : a finite universal set.
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■ U : a finite universal set.

■ R: a random subset of U given by Pr(r ∈ R) = pr.

■ {Ai}i∈I : a family of subsets of U .

■ i ∼ j if Ai ∩ Aj 6= ∅.

■ Bi: the event Ai ⊂ R for i ∈ I.

■ Xi: the indicator random variable for Bi.

■ X :=
∑

i∈I Xi; µ = E(X) =
∑

i∈I Pr(Bi).

■ ∆ =
∑

i∼j Pr(Bi ∧Bj); sum over all ordered pairs i ∼ j.

■ M =
∏

i∈I Pr(B̄i).
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The Janson inequality: Assume all Pr(Bi) ≤ ǫ. Then

M ≤ Pr(∧i∈IB̄i) ≤ Me
∆

2(1−ǫ) ,

and, further,
Pr(∧i∈IB̄i) ≤ e−µ+∆

2 .
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The Janson inequality: Assume all Pr(Bi) ≤ ǫ. Then

M ≤ Pr(∧i∈IB̄i) ≤ Me
∆

2(1−ǫ) ,

and, further,
Pr(∧i∈IB̄i) ≤ e−µ+∆

2 .

The Extended Janson inequality: If further ∆ ≥ µ, then

Pr(∧i∈IB̄i) ≤ e
−µ2

2∆ .
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Proof given by Boppana and Spencer: We will use the
following correlation inequality.

■ For all J ⊂ I, i 6∈ J ,

Pr(Bi | ∧j∈JB̄j) ≤ Pr(Bi).

■ For J ⊂ I, i, k 6∈ J ,

Pr(Bi | Bk ∧ ∧j∈JB̄j) ≤ Pr(Bi | Bk).
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Proof given by Boppana and Spencer: We will use the
following correlation inequality.

■ For all J ⊂ I, i 6∈ J ,

Pr(Bi | ∧j∈JB̄j) ≤ Pr(Bi).

■ For J ⊂ I, i, k 6∈ J ,

Pr(Bi | Bk ∧ ∧j∈JB̄j) ≤ Pr(Bi | Bk).

Order the index set I = {1, 2, . . . ,m}.

Pr(∧i∈IB̄i) =
m
∏

i=1

Pr
(

B̄i | ∧1≤j<iB̄j

)

≥
m
∏

i=1

Pr(B̄i).



Continue
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For a given i renumber, for convenience, so that i ∼ j for
1 ≤ j ≤ d and not for d+ 1 ≤ j < i. Let A = Bi,
B = B̄1 ∧ · · · ∧ B̄d, and C = B̄d+1 ∧ · · · ∧ B̄i−1,

Pr(Bi | ∧1≤j<iB̄j) = Pr(A | B ∧ C)

≥ Pr(A ∧ B | C)

= Pr(A | C)Pr(B | A ∧ C).

Note Pr(A | C) = Pr(A) and

Pr(B | A∧C) ≥ 1−
d
∑

j=1

Pr(Bj | Bi∧C) ≥ 1−
d
∑

j=1

Pr(Bj | Bi).
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For a given i renumber, for convenience, so that i ∼ j for
1 ≤ j ≤ d and not for d+ 1 ≤ j < i. Let A = Bi,
B = B̄1 ∧ · · · ∧ B̄d, and C = B̄d+1 ∧ · · · ∧ B̄i−1,

Pr(Bi | ∧1≤j<iB̄j) = Pr(A | B ∧ C)

≥ Pr(A ∧ B | C)

= Pr(A | C)Pr(B | A ∧ C).

Note Pr(A | C) = Pr(A) and

Pr(B | A∧C) ≥ 1−
d
∑

j=1

Pr(Bj | Bi∧C) ≥ 1−
d
∑

j=1

Pr(Bj | Bi).

Pr(Bi | ∧1≤j<iB̄j) ≥ Pr(Bi)−
∑d

j=1 Pr(Bj ∧ Bi).



Continue
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Pr(B̄i | ∧1≤j<iB̄j) ≤ Pr(B̄i) +
d
∑

j=1

Pr(Bj ∧ Bi)

≤ Pr(B̄i)

(

1 +
1

1− ǫ

d
∑

j=1

Pr(Bj ∧Bi)

)

≤ Pr(B̄i)e
1

1−ǫ

∑d

j=1 Pr(Bj∧Bi).



Continue
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Pr(B̄i | ∧1≤j<iB̄j) ≤ Pr(B̄i) +
d
∑

j=1

Pr(Bj ∧ Bi)

≤ Pr(B̄i)

(

1 +
1

1− ǫ

d
∑

j=1

Pr(Bj ∧Bi)

)

≤ Pr(B̄i)e
1

1−ǫ

∑d

j=1 Pr(Bj∧Bi).

Plug it into Pr(∧i∈IB̄i) =
∏m

i=1 Pr
(

B̄i | ∧1≤j<iB̄j

)

; we get
the first inequality. The second inequality use the following
estimation.

Pr(B̄i | ∧1≤j<iB̄j) ≤ Pr(B̄i) +
d
∑

j=1

Pr(Bj ∧ Bi)

≤ e−Pr(Bi)+
∑d

j=1 Pr(Bj∧Bi).



Proof of second Theorem
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From the Jansen inequality, we have

− ln(Pr(∧i∈IB̄i)) ≥
∑

i∈I

Pr(Bi)−
1

2

∑

i∼j

Pr(Bi ∧Bj).
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From the Jansen inequality, we have

− ln(Pr(∧i∈IB̄i)) ≥
∑

i∈I

Pr(Bi)−
1

2

∑

i∼j

Pr(Bi ∧Bj).

For any set S ⊂ I, the same inequality applied to {Bi}i∈S:

− ln(Pr(∧i∈SB̄i)) ≥
∑

i∈S

Pr(Bi)−
1

2

∑

i,j∈S,i∼j

Pr(Bi ∧ Bj).

Now take S be a random subset of I given by
Pr(i ∈ S) = p, and take the expectation.

E
[

− ln(Pr(∧i∈SB̄i))
]

≥ pµ− p2
∆

2
.
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Now choose p = µ/∆.

E
[

− ln(Pr(∧i∈SB̄i))
]

≥
µ2

2∆
.
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Now choose p = µ/∆.

E
[

− ln(Pr(∧i∈SB̄i))
]

≥
µ2

2∆
.

Then there is a specific S ⊂ I for which

− ln(Pr(∧i∈SB̄i)) ≥
µ2

2∆
.
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Now choose p = µ/∆.

E
[

− ln(Pr(∧i∈SB̄i))
]

≥
µ2

2∆
.

Then there is a specific S ⊂ I for which

− ln(Pr(∧i∈SB̄i)) ≥
µ2

2∆
.

Pr(∧i∈SB̄i) ≤ e−
µ2

2∆ .
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Now choose p = µ/∆.

E
[

− ln(Pr(∧i∈SB̄i))
]

≥
µ2

2∆
.

Then there is a specific S ⊂ I for which

− ln(Pr(∧i∈SB̄i)) ≥
µ2

2∆
.

Pr(∧i∈SB̄i) ≤ e−
µ2

2∆ .

Pr(∧i∈IB̄i) ≤ Pr(∧i∈SB̄i) ≤ e−
µ2

2∆ . �
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■ Xi: the indicator random variable for Bi, for i ∈ I.
■ X :=

∑m
i=1Xi.

■ m = m(n), Bi = Bi(n), and X = X(n).
■ Let

S(r) =
∑

Pr(Bi1 ∧ · · · ∧Bir),

where the sum is over all sets
{i1, . . . , ir} ⊂ {1, 2 . . . ,m}.

■ Let
X(r) = X(X − 1) · · · (X − r + 1).
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■ Xi: the indicator random variable for Bi, for i ∈ I.
■ X :=

∑m
i=1Xi.

■ m = m(n), Bi = Bi(n), and X = X(n).
■ Let

S(r) =
∑

Pr(Bi1 ∧ · · · ∧Bir),

where the sum is over all sets
{i1, . . . , ir} ⊂ {1, 2 . . . ,m}.

■ Let
X(r) = X(X − 1) · · · (X − r + 1).

By inclusion-exclusion principle,

Pr(X = 0) = Pr(B̄1 ∧ · · · ∧ B̄m) =
∑

r≥0

(−1)rS(r).



Brun’s sieve

Topic Course on Probabilistic Methods (week 10) Linyuan Lu, University of South Carolina – 14 / 28

Theorem: Suppose there is a constant µ so that for every
fixed r,

E

(

X

r

)

= S(r) →
µr

r!
.

Then
Pr(X = 0) → e−µ,

and for every t

Pr(X = t) →
µt

t!
e−µ.



Proof
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Proof: We only prove the case t = 0. Fix ǫ > 0. Choose s
so that

∣

∣

∣

∣

∣

2s
∑

r=0

(−1)r
µr

r!
− e−µ

∣

∣

∣

∣

∣

≤
ǫ

2
.

Select n0 so that for n ≥ n0,

|S(r) −
µr

r!
| ≤

ǫ

2s(2s+ 1)

for 0 ≤ r ≤ 2s.



Continue
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For such n,

Pr[X = 0] ≤
2s
∑

r=0

(−1)rS(r)

≤
2s
∑

r=0

(−1)r
µr

r!
+

ǫ

2

≤ e−µ + ǫ.



Continue
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For such n,

Pr[X = 0] ≤
2s
∑

r=0

(−1)rS(r)

≤
2s
∑

r=0

(−1)r
µr

r!
+

ǫ

2

≤ e−µ + ǫ.

Similarly, taking the sum to 2s+ 1, we can find n0 so that
for n ≥ n0,

Pr[X = 0] ≥ e−µ − ǫ.

As ǫ was arbitrary Pr(X = 0) → e−µ. �



An application
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Let G = G(n, p), and EPIT represent the statement that
every vertex lies in a triangle.
Theorem (a special case of Spencer’s Theorem): Let
c > 0 be fixed and let p = p(n), µ = µ(n) satisfy

(

n− 1

2

)

p3 = µ,

e−µ =
c

n
.

Then
lim
n→∞

Pr(G(n, p) satisfies EPIT ) = e−c.



Proof
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First fix x ∈ V (G). For each unordered y, z 6= x let Bxyz be
the event that {x, y, z} is a triangle of G. Let Cx be the
event ∧y,zB̄xyz and Xx the corresponding indicator random
variable. Apply Janson’s Inequality to bound
E(Xx) = Pr(∧y,zB̄xyz).
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First fix x ∈ V (G). For each unordered y, z 6= x let Bxyz be
the event that {x, y, z} is a triangle of G. Let Cx be the
event ∧y,zB̄xyz and Xx the corresponding indicator random
variable. Apply Janson’s Inequality to bound
E(Xx) = Pr(∧y,zB̄xyz).

∆ =
∑

y,z,z′

Pr(Bxyz ∧ Bxyz′) = O(n3p5) = o(1)

since p = n−2/3+o(1).
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First fix x ∈ V (G). For each unordered y, z 6= x let Bxyz be
the event that {x, y, z} is a triangle of G. Let Cx be the
event ∧y,zB̄xyz and Xx the corresponding indicator random
variable. Apply Janson’s Inequality to bound
E(Xx) = Pr(∧y,zB̄xyz).

∆ =
∑

y,z,z′

Pr(Bxyz ∧ Bxyz′) = O(n3p5) = o(1)

since p = n−2/3+o(1). Thus

E(Xx) ≈ e−µ =
c

n
.
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Let X =
∑

xXx, which is the number of vertices x no lying
a triangle.

E(X) =
∑

x

E(Xx) → c.

We need to show that the Poisson Paradigm applies to X.
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Let X =
∑

xXx, which is the number of vertices x no lying
a triangle.

E(X) =
∑

x

E(Xx) → c.

We need to show that the Poisson Paradigm applies to X.
Fix r and consider

E

(

X

r

)

= S(r) =
∑

Pr(Cx1
∧ · · · ∧ Cxr

),

where the sum is over all sets {x1, . . . , xr}.
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Let X =
∑

xXx, which is the number of vertices x no lying
a triangle.

E(X) =
∑

x

E(Xx) → c.

We need to show that the Poisson Paradigm applies to X.
Fix r and consider

E

(

X

r

)

= S(r) =
∑

Pr(Cx1
∧ · · · ∧ Cxr

),

where the sum is over all sets {x1, . . . , xr}. Note

Cx1
∧ · · · ∧ Cxr

= ∧1≤i≤r,y,zBxiyz.



Continue

Topic Course on Probabilistic Methods (week 10) Linyuan Lu, University of South Carolina – 20 / 28

We apply Janson’s Inequality again.

∑

Pr(Bxiyz) = p3
(

r

(

n− 1

2

)

−O(n)

)

= rµ+O(n−1+o(1)).

As before ∆ is p5 times the number of pairs xiyz ∼ xjyz;
∆ = O(n3p5) = o(1).
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We apply Janson’s Inequality again.

∑

Pr(Bxiyz) = p3
(

r

(

n− 1

2

)

−O(n)

)

= rµ+O(n−1+o(1)).

As before ∆ is p5 times the number of pairs xiyz ∼ xjyz;
∆ = O(n3p5) = o(1).

Pr(Cx1
∧ · · · ∧ Cxr

) ∼ e−rµ

E

(

X

r

)

≈

(

n

r

)

e−rµ ≈
cr

r!
.
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We apply Janson’s Inequality again.

∑

Pr(Bxiyz) = p3
(

r

(

n− 1

2

)

−O(n)

)

= rµ+O(n−1+o(1)).

As before ∆ is p5 times the number of pairs xiyz ∼ xjyz;
∆ = O(n3p5) = o(1).

Pr(Cx1
∧ · · · ∧ Cxr

) ∼ e−rµ

E

(

X

r

)

≈

(

n

r

)

e−rµ ≈
cr

r!
.

Applying Brun’s Sieve method, we have Pr(X = 0) → e−c.
�



Large deviations
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Let X =
∑

i,j txitxjtij be the number of triangles containing
x in G(n, p). Let µ = E(X).

■ Kim-Vu’s inequality implies “ if µ ≫ ln6 n, then with
probability 1− o(1), (1− ǫ)µ ≤ X ≤ (1 + ǫ)µ.”
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Let X =
∑

i,j txitxjtij be the number of triangles containing
x in G(n, p). Let µ = E(X).

■ Kim-Vu’s inequality implies “ if µ ≫ ln6 n, then with
probability 1− o(1), (1− ǫ)µ ≤ X ≤ (1 + ǫ)µ.”

■ With disjoint family (of Poisson paradigm), one can
lower the condition to µ ≫ lnn.



Disjoint family
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For a fixed random set R, an index J ⊆ I is a disjoint
family (disfam) if

■ Bj ⊂ R for every j ∈ J .
■ For no j, j′ ∈ J is j ∼ j′.
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For a fixed random set R, an index J ⊆ I is a disjoint
family (disfam) if

■ Bj ⊂ R for every j ∈ J .
■ For no j, j′ ∈ J is j ∼ j′.

J is a maximal disjoint family (maxdisfam) if in addition

■ If j′ 6∈ J and Bj′ the j ∼ j′ for some j ∈ J .
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For a fixed random set R, an index J ⊆ I is a disjoint
family (disfam) if

■ Bj ⊂ R for every j ∈ J .
■ For no j, j′ ∈ J is j ∼ j′.

J is a maximal disjoint family (maxdisfam) if in addition

■ If j′ 6∈ J and Bj′ the j ∼ j′ for some j ∈ J .

Lemma 8.4.1:
Pr(there exists a maxdisfam J, |J | = s) ≤ µs

s! .
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For a fixed random set R, an index J ⊆ I is a disjoint
family (disfam) if

■ Bj ⊂ R for every j ∈ J .
■ For no j, j′ ∈ J is j ∼ j′.

J is a maximal disjoint family (maxdisfam) if in addition

■ If j′ 6∈ J and Bj′ the j ∼ j′ for some j ∈ J .

Lemma 8.4.1:
Pr(there exists a maxdisfam J, |J | = s) ≤ µs

s! .

Lemma 8.4.2: Let ν = maxj∈I
∑

i∼j Pr(Bi). Then

Pr(there exists a maxdisfam J, |J | = s) ≤ µs

s! e
−µesνe∆/2.
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Let
∑∗ denote the sum over all s-sets J ⊆ I with no j ∼ j′.

Let
∑o denote the sum over ordered distinct s-tuples. Then

Pr(there exists a maxdisfam J, |J | = s)

≤
∑∗Pr (∧j∈JBj)

=
∑∗

∏

j∈J

Pr(Bj) ≤
1

s!

∑oPr(Bj1) · · ·Pr(Bjs)

≤
1

s!

(

∑

i∈I

Pr(Bi)

)s

=
µs

s!
.
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Let µs denote the minimum, over all j1, . . . , js ∈ I of
∑

Pr(Bi), the sum over all i ∈ I except those i with i ∼ jl
for some 1 ≤ l ≤ s. We have µs ≥ µ− sν.

Pr(J maxdisfam) = Pr(J disfam)Pr(∧∗B̄i).

Applying Janson’s inequality, we get

Pr(∧∗B̄i) ≤ e−µse∆/2.

∑∗Pr(J maxdisfam) ≤ e−µse∆/2∑∗Pr(J disfam)

≤
µs

s!
e−µse∆/2 ≤

µs

s!
e−µesνe∆/2.
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Let P be the Poisson distribution with mean µ. When
µ ≫ lnn, ∆ = o(1), and νµ = o(1), then
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Let P be the Poisson distribution with mean µ. When
µ ≫ lnn, ∆ = o(1), and νµ = o(1), then

Pr(there exists a maxdisfam J, |J | ≤ µ(1− ǫ))

≤ (1 + o(1))Pr(P ≤ µ(1− ǫ));

Pr(there exists a maxdisfam J, µ(1 + ǫ) ≤ |J | ≤ 3µ)

≤ (1 + o(1))Pr((1 + ǫ)µ ≤ P ≤ 3µ);

Pr(there exists a maxdisfam J, |J | ≥ 3µ) ≤
∞
∑

s=3µ

µs

s!
= o(n−1).
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Let P be the Poisson distribution with mean µ. When
µ ≫ lnn, ∆ = o(1), and νµ = o(1), then

Pr(there exists a maxdisfam J, |J | ≤ µ(1− ǫ))

≤ (1 + o(1))Pr(P ≤ µ(1− ǫ));

Pr(there exists a maxdisfam J, µ(1 + ǫ) ≤ |J | ≤ 3µ)

≤ (1 + o(1))Pr((1 + ǫ)µ ≤ P ≤ 3µ);

Pr(there exists a maxdisfam J, |J | ≥ 3µ) ≤
∞
∑

s=3µ

µs

s!
= o(n−1).

With probability 1− o(n−1), every maxdisfam J has size
between (1− ǫ)µ and (1 + ǫ)µ.



Application
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Let X be the number of triangles containing x in G(n, p).
Let µ = E(X) ∼ 1

2n
2p3. Assume µ ≫ lnn.
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Let X be the number of triangles containing x in G(n, p).
Let µ = E(X) ∼ 1

2n
2p3. Assume µ ≫ lnn.

We have ∆ ≤ n3p5 = o(1) and µν = n3p5 = o(1). Thus,
with probability 1− o(n−1), every maxdisfam J has size
between (1− ǫ)µ and (1 + ǫ)µ.
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Let X be the number of triangles containing x in G(n, p).
Let µ = E(X) ∼ 1

2n
2p3. Assume µ ≫ lnn.

We have ∆ ≤ n3p5 = o(1) and µν = n3p5 = o(1). Thus,
with probability 1− o(n−1), every maxdisfam J has size
between (1− ǫ)µ and (1 + ǫ)µ.

Construct a graph H = (V,E) with
V = { all triangles containing x} and two triangles is
adjacent if they share an edge. The with probability 1− o(1),
each vertex xyz has degree at most 9 and no set of four
disjoint edges. This implies, for any J , |J | ≥ X − 27. Thus,

X ≤ (1 + ǫ)µ+ 27 ≤ (1 + ǫ′)µ.
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A sufficient condition for Janson’s Inequality:

■ I: a dependency digraph; if for each i ∈ I the event Bi

is mutually independent of {Bj : i 6∼ j}.
■ ∆ :=

∑

i∼j Pr(Bi ∧ Bj).
■ For all J ⊂ I, i 6∈ J ,

Pr(Bi | ∧j∈JB̄j) ≤ Pr(Bi).

■ For J ⊂ I, i, k 6∈ J ,

Pr(Bi | Bk ∧ ∧j∈JB̄j) ≤ Pr(Bi | Bk).

Then Janson’s inequality holds.



Suen’s theorem
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An binary relation ∼ on I is superdenpendency digraph if
the following holds:
Suppose that J1, J2 ⊂ I are disjoint subsets so that there is
no edge between J1 and J2. Let B

1 be any Boolean
combination of the events {Bj}j∈J1 and B2 be any Boolean
combination of the events {Bj}j∈J2. Then B1 and B2 are
independent.
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An binary relation ∼ on I is superdenpendency digraph if
the following holds:
Suppose that J1, J2 ⊂ I are disjoint subsets so that there is
no edge between J1 and J2. Let B

1 be any Boolean
combination of the events {Bj}j∈J1 and B2 be any Boolean
combination of the events {Bj}j∈J2. Then B1 and B2 are
independent.
Theorem [Suen]: Under the above conditions,

∣

∣Pr(∧i∈IB̄i)−M
∣

∣ ≤ M(e
∑

i∼j y(i,j) − 1),

where
yi,j = (Pr(Bi∧Bj)+Pr(Bi)Pr(Bj))

∏

l∼i or l∼j(1−Pr(Bl))
−1.
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