Topic Course on Probabilistic Methods

 (Week 1)Linearity of Expectation (1)

Linyuan Lu
University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Linearity of Expectation

- Ramsey numbers

■ Tournament
■ Dominating set

- Property B problem
- $\mathrm{A}(k, l)$-system
- Sum-free sets
- Erdös-Ko-Rado Theorem

History

Paul Erdős: 1913-1996
 1525 papers
 511 coauthors

History

Paul Erdős: 1913-1996
 1525 papers
 511 coauthors

Main contributions:

- Ramsey theory
- Probabilistic method
- Extremal combinatorics
- Additive number theory

Notation

A graph G consists of two sets V and E.

- $\quad V$ is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of vertices.

Complete graphs K_{n} :

K_{3}

K_{4}

K_{5}

K_{6}

Ramsey number $R(k, k)$

Ramsey number $R(k, l)$: the smallest integer n such that in any two-coloring of the edges of a complete graph on n vertices K_{n} by red and blue, either there is a red K_{k} or a blue K_{l}.

Ramsey number $R(k, k)$

Ramsey number $R(k, l)$: the smallest integer n such that in any two-coloring of the edges of a complete graph on n vertices K_{n} by red and blue, either there is a red K_{k} or a blue K_{l}.

Major question: How large is $R(k, k)$?

Ramsey number $R(k, k)$

Ramsey number $R(k, l)$: the smallest integer n such that in any two-coloring of the edges of a complete graph on n vertices K_{n} by red and blue, either there is a red K_{k} or a blue K_{l}.
Major question: How large is $R(k, k)$?
Proposition (by Erdős): If $\binom{n}{2} 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$. Thus

$$
R(k, k)>\frac{k}{e \sqrt{2}} 2^{k / 2}
$$

Ramsey number $R(3,3)=6$

If edges of K_{6} are 2-colored then there exists a monochromatic triangle.

Ramsey number $R(3,3)=6$

- If edges of K_{6} are 2 -colored then there exists a monochromatic triangle.

There exists a 2-coloring of edges of K_{5} with no monochromatic triangle.

Erdős' idea

To prove $R(k, k)>n$, we need construct a 2-coloring of K_{n} so that it contains no red K_{k} or blue K_{k}.

Erdős' idea

To prove $R(k, k)>n$, we need construct a 2-coloring of K_{n} so that it contains no red K_{k} or blue K_{k}.

Make the set of all 2-colorings of K_{n} into a probability space, then show the event " no red K_{k} or blue K_{k} " with positive probability.

Probability space

Finite probability space (Ω, P) :

- $\Omega:=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$: a set of n elements.

Probability space

Finite probability space (Ω, P) :

- $\Omega:=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$: a set of n elements.
$P: \Omega \rightarrow[0,1]:$ a probability measure. View P as a vector $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{n} p_{i}=1$.

Probability space

Finite probability space (Ω, P) :

- $\Omega:=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$: a set of n elements.
- $P: \Omega \rightarrow[0,1]:$ a probability measure. View P as a vector $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{n} p_{i}=1$.
- An event A : a subset of Ω.

Probability space

Finite probability space (Ω, P) :
■ $\Omega:=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$: a set of n elements.

- $P: \Omega \rightarrow[0,1]:$ a probability measure. View P as a vector $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{n} p_{i}=1$.
- An event A : a subset of Ω.
- Probability of $A: \operatorname{Pr}(A)=\sum_{s_{i} \in A} p_{i}$.

Probability space

Finite probability space (Ω, P) :

- $\Omega:=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$: a set of n elements.
- $P: \Omega \rightarrow[0,1]:$ a probability measure. View P as a vector $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{n} p_{i}=1$.
- An event A : a subset of Ω.
- Probability of $A: \operatorname{Pr}(A)=\sum_{s_{i} \in A} p_{i}$.
- Two events A and B are independent if

$$
\operatorname{Pr}(A B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Proof of Proposition 1:

Color every edge of K_{n} independently either red or blue, where each color is equally likely.

Proof of Proposition 1:

Color every edge of K_{n} independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_{R} be the event that all pairs with both ends in R are either all red or all blue.

Proof of Proposition 1:

Color every edge of K_{n} independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_{R} be the event that all pairs with both ends in R are either all red or all blue.

$$
\operatorname{Pr}\left(A_{R}\right)=2^{1-\binom{k}{2} .}
$$

Proof of Proposition 1:

Color every edge of K_{n} independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_{R} be the event that all pairs with both ends in R are either all red or all blue.

$$
\begin{gathered}
\operatorname{Pr}\left(A_{R}\right)=2^{1-\binom{k}{2}} \\
\operatorname{Pr}\left(\vee_{R} A_{R}\right) \leq \sum_{R} \operatorname{Pr}\left(A_{R}\right)=\binom{n}{k} 2^{1-\binom{k}{2}}<1 .
\end{gathered}
$$

Proof of Proposition 1:

Color every edge of K_{n} independently either red or blue, where each color is equally likely.
For any fixed set R of k vertices, let A_{R} be the event that all pairs with both ends in R are either all red or all blue.

$$
\begin{gathered}
\operatorname{Pr}\left(A_{R}\right)=2^{1-\binom{k}{2}} . \\
\operatorname{Pr}\left(\vee_{R} A_{R}\right) \leq \sum_{R} \operatorname{Pr}\left(A_{R}\right)=\binom{n}{k} 2^{1-\binom{k}{2}}<1 .
\end{gathered}
$$

Hence $\operatorname{Pr}\left(\wedge_{R} \bar{A}_{R}\right)=1-\operatorname{Pr}\left(\vee_{R} A_{R}\right)>0$.

Estimation of n

Since $\binom{n}{k} \leq \frac{1}{e}\left(\frac{e n}{k}\right)^{k}$ for all $n \geq k \geq 1$, we have

$$
\begin{aligned}
\binom{n}{k} 2^{1-\binom{k}{2}} & \leq \frac{1}{e}\left(\frac{e n}{k}\right)^{k} 2^{1-\binom{k}{2}} \\
& \leq \frac{2}{e}\left(\frac{e n}{k 2^{(k-1) / 2}}\right)^{k} \\
& <1
\end{aligned}
$$

provided $n \leq \frac{k}{e \sqrt{2}} 2^{k / 2}$.

Estimation of n

Since $\binom{n}{k} \leq \frac{1}{e}\left(\frac{e n}{k}\right)^{k}$ for all $n \geq k \geq 1$, we have

$$
\begin{aligned}
\binom{n}{k} 2^{1-\binom{k}{2}} & \leq \frac{1}{e}\left(\frac{e n}{k}\right)^{k} 2^{1-\binom{k}{2}} \\
& \leq \frac{2}{e}\left(\frac{e n}{k 2^{(k-1) / 2}}\right)^{k} \\
& <1
\end{aligned}
$$

provided $n \leq \frac{k}{e \sqrt{2}} 2^{k / 2}$.
Hence,

$$
R(k, k)>\frac{k}{e \sqrt{2}} 2^{k / 2}
$$

How good is the bound?

Erdős [1947]:

$$
R(k, k)>(1+o(1)) \frac{1}{e \sqrt{2}} k 2^{k / 2} .
$$

How good is the bound?

Erdős [1947]:

$$
R(k, k)>(1+o(1)) \frac{1}{e \sqrt{2}} k 2^{k / 2}
$$

Spencer [1990]:

$$
R(k, k)>(1+o(1)) \frac{1}{e} k 2^{k / 2} .
$$

How good is the bound?

Erdős [1947]:

$$
R(k, k)>(1+o(1)) \frac{1}{e \sqrt{2}} k 2^{k / 2}
$$

Spencer [1990]:

$$
R(k, k)>(1+o(1)) \frac{1}{e} k 2^{k / 2} .
$$

Spencer [1975] (using Lovasz Local Lemma)

$$
R(k, k)>(1+o(1)) \frac{\sqrt{2}}{e} k 2^{k / 2}
$$

Upper bound of $R(k, k)$

A trivial bound:

$$
R(k, k) \leq\binom{ 2 k-2}{k-1}
$$

Upper bound of $R(k, k)$

A trivial bound:

$$
R(k, k) \leq\binom{ 2 k-2}{k-1}
$$

Thomason [1988]:

$$
R(k, k) \leq k^{-1 / 2+c / \sqrt{\log k}}\binom{2 k-2}{k-1}
$$

Upper bound of $R(k, k)$

A trivial bound:

$$
R(k, k) \leq\binom{ 2 k-2}{k-1}
$$

Thomason [1988]:

$$
R(k, k) \leq k^{-1 / 2+c / \sqrt{\log k}}\binom{2 k-2}{k-1}
$$

Conlon [2009]:

$$
R(k, k) \leq k^{-C \frac{\log k}{\log \log k}}\binom{2 k-2}{k-1}
$$

Diagonal Ramsey Problem

Erdős problems:

■ $\$ 100$ for proving the limit $\lim _{k \rightarrow \infty} R(k, k)^{1 / k}$ exists.

Diagonal Ramsey Problem

Erdős problems:

- $\$ 100$ for proving the limit $\lim _{k \rightarrow \infty} R(k, k)^{1 / k}$ exists.
- $\$ 250$ for determining the value of $\lim _{k \rightarrow \infty} R(k, k)^{1 / k}$ if it exists.

Diagonal Ramsey Problem

Erdős problems:

■ $\$ 100$ for proving the limit $\lim _{k \rightarrow \infty} R(k, k)^{1 / k}$ exists.

- $\$ 250$ for determining the value of $\lim _{k \rightarrow \infty} R(k, k)^{1 / k}$ if it exists.

If $\lim _{k \rightarrow \infty} R(k, k)^{1 / k}$ exists, then it is between $\sqrt{2}$ to 4 .

Tournament

- V : a set of n players.

Tournament

- V : a set of n players. (x, y) means player x beats y.

Tournament

- V : a set of n players.
- (x, y) means player x beats y.
- Tournament on V : an orientation $T=(V, E)$ of complete graphs on V. For each pair of plays x and y, either (x, y) or (y, x) is in E.

We say T has property S_{k} if for every set of k players there is one beats all.

A question

Question (by Schütte): Is there a tournament satisfying the property S_{k} ?

A question

Question (by Schütte): Is there a tournament satisfying the property S_{k} ?
Theorem (Erdős [1963]) If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there is a tournament on n vertices that has the property S_{k}.

A question

Question (by Schütte): Is there a tournament satisfying the property S_{k} ?
Theorem (Erdős [1963]) If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there is a tournament on n vertices that has the property S_{k}.
Proof: Consider a random tournament on V. For each pair x and y, the choice of (x, y) and (y, x) is equally likely.

A question

Question (by Schütte): Is there a tournament satisfying the property S_{k} ?
Theorem (Erdős [1963]) If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there is a tournament on n vertices that has the property S_{k}.
Proof: Consider a random tournament on V. For each pair x and y, the choice of (x, y) and (y, x) is equally likely.

- K : a fixed subset of size k of V.
- A_{K} : the event that there is no vertex that beats all the members of K.

A question

Question (by Schütte): Is there a tournament satisfying the property S_{k} ?
Theorem (Erdős [1963]) If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there is a tournament on n vertices that has the property S_{k}.
Proof: Consider a random tournament on V. For each pair x and y, the choice of (x, y) and (y, x) is equally likely.

- K : a fixed subset of size k of V.
- A_{K} : the event that there is no vertex that beats all the members of K.

$$
\operatorname{Pr}\left(A_{K}\right)=\left(1-2^{-k}\right)^{n-k}
$$

Proof continues

$$
\begin{aligned}
\operatorname{Pr}\left(\vee_{K \in\binom{V}{k}} A_{K}\right) & \leq \sum_{K \in\binom{V}{k}} \operatorname{Pr}\left(A_{K}\right) \\
& =\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1 .
\end{aligned}
$$

Therefore, with positive probability, no event A_{K} occurs; that is, there is a tournament on n vertices that has the property S_{k}.

Estimation of n

Let $f(k)$ denote the minimum possible number of vertices of a tournament that has the property S_{k}.
On one hand, since $\binom{n}{k}<(e n / k)^{k}$ and
$\left(1-2^{-k}\right)^{n-k}<2^{(n-k) / 2^{k}}$, we have

$$
f(k) \leq(1+o(1)) \ln 2 \cdot k^{2} \cdot 2^{k} .
$$

On the other hand, Szekeres proved

$$
f(k) \geq c_{1} k 2^{k} .
$$

Random variable

(Ω, P) : a probability space.

Random variable

(Ω, P) : a probability space.
 $X: \Omega \rightarrow \mathbb{R}$: a random variable.

Random variable

(Ω, P) : a probability space.
$X: \Omega \rightarrow \mathbb{R}$: a random variable.
The expectation of X, denoted by $\mathrm{E}(X)$, is defined as

$$
\mathrm{E}(X)=\sum_{v \in \Omega} X(v) p_{v}
$$

Random variable

- (Ω, P) : a probability space.

■ $X: \Omega \rightarrow \mathbb{R}$: a random variable.

- The expectation of X, denoted by $\mathrm{E}(X)$, is defined as

$$
\mathrm{E}(X)=\sum_{v \in \Omega} X(v) p_{v}
$$

Linearity of expectation:

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)
$$

Dominating set

A dominating set of a graph $G=(V, E)$ is a set $U \subseteq V$ such that vertex $v \in V-U$ has at least one neighbor in U.

Dominating set

A dominating set of a graph $G=(V, E)$ is a set $U \subseteq V$ such that vertex $v \in V-U$ has at least one neighbor in U.

Theorem: Let $G=(V, E)$ be a graph on n vertices, with minimum degree $\delta>1$. Then G has a dominating set of at most $\frac{1+\ln (\delta+1)}{\delta+1} n$.

Proof

$p \in[0,1]$: a probability chosen later.

Proof

$p \in[0,1]$: a probability chosen later.
X : a random set, whose vertex is picked randomly and independently with probability p.

Proof

- $p \in[0,1]$: a probability chosen later.
- X : a random set, whose vertex is picked randomly and independently with probability p.
- $Y:=Y_{X}$: the set of vertices in $V-X$ that do not have any neighbor in X.

Proof

- $p \in[0,1]$: a probability chosen later.
- X : a random set, whose vertex is picked randomly and independently with probability p.
- $Y:=Y_{X}$: the set of vertices in $V-X$ that do not have any neighbor in X.

$$
\mathrm{E}(|X|)=\sum_{v} \operatorname{Pr}(v \in X)=n p .
$$

Proof

- $p \in[0,1]$: a probability chosen later.
- X : a random set, whose vertex is picked randomly and independently with probability p.
- $Y:=Y_{X}$: the set of vertices in $V-X$ that do not have any neighbor in X.

$$
\begin{gathered}
\mathrm{E}(|X|)=\sum_{v} \operatorname{Pr}(v \in X)=n p \\
\mathrm{E}(|Y|)=\sum_{v} \operatorname{Pr}(v \in Y) \\
\leq n(1-p)^{\delta+1} .
\end{gathered}
$$

continue

Let $U=X \cup Y_{X}$. The set U is clearly a dominating set.

continue

Let $U=X \cup Y_{X}$. The set U is clearly a dominating set. We have

$$
\begin{aligned}
\mathrm{E}(|U|) & =\mathrm{E}(X)+\mathrm{E}(Y) \\
& \leq n p+n(1-p)^{\delta+1} \\
& \leq n\left(p+e^{-p(\delta+1)}\right) .
\end{aligned}
$$

Choose $p=\frac{\ln (\delta+1)}{\delta+1}$ to minimize the upper bound. There is a dominating set of size at most

$$
\frac{1+\ln (\delta+1)}{\delta+1} n
$$

Hypergraphs

$$
H=(V, E) \text { is an } r \text {-uniform hypergraph (} r \text {-graph, for short). }
$$

■ V : the set of vertices

- E : the set of edges, each edge has cardinality r.

Hypergraphs

$H=(V, E)$ is an r-uniform hypergraph (r-graph, for short).
■ V : the set of vertices

- E : the set of edges, each edge has cardinality r.

A 3-uniform loose cycle

A 3-uniform tight cycle

Property B problem

We say a r-uniform hypergraph H has property \mathbf{B} if there is a two-coloring of V such that no edge is monochromatic.

Property B problem

We say a r-uniform hypergraph H has property \mathbf{B} if there is a two-coloring of V such that no edge is monochromatic. Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Property B problem

We say a r-uniform hypergraph H has property \mathbf{B} if there is a two-coloring of V such that no edge is monochromatic. Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.
Proposition [Erdős (1963)] Every r-uniform hypergraph with less than 2^{r-1} edges has property B . Therefore $m(r) \geq 2^{r-1}$.

Proof

Let H be an r-uniform hypergraph with less than 2^{r-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_{e} be the event that e is monochromatic.

$$
\operatorname{Pr}\left(A_{e}\right)=2^{1-r} .
$$

Proof

Let H be an r-uniform hypergraph with less than 2^{r-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_{e} be the event that e is monochromatic.

$$
\operatorname{Pr}\left(A_{e}\right)=2^{1-r} .
$$

Therefore,

$$
\operatorname{Pr}\left(\vee_{e \in E} A_{e}\right) \leq \sum_{e \in E} \operatorname{Pr}\left(A_{e}\right)<1
$$

There is a two-coloring without monochromatic edges. \square

Upper bound

Theorem (Erdős [1964]): $m(r)<(1+o(1)) \frac{e \ln 2}{4} r^{2} 2^{r}$.

Upper bound

Theorem (Erdős [1964]): $m(r)<\left(1+o(1) \frac{e \ln 2}{4} r^{2} 2^{r}\right.$.
Proof: Fix V with n points. Let χ be a coloring of V with a points in one color, $b=n-a$ points in the other. Let $S \subset V$ be a uniformly selected r-set.

Upper bound

Theorem (Erdős [1964]): $m(r)<\left(1+o(1) \frac{e \ln 2}{4} r^{2} 2^{r}\right.$.
Proof: Fix V with n points. Let χ be a coloring of V with a points in one color, $b=n-a$ points in the other. Let $S \subset V$ be a uniformly selected r-set. Then

$$
\operatorname{Pr}(S \text { is monochromatic under } \chi)=\frac{\binom{a}{r}+\binom{b}{r}}{\binom{n}{r}} .
$$

Upper bound

Theorem (Erdős [1964]): $m(r)<(1+o(1)) \frac{e \ln 2}{4} r^{2} 2^{r}$.
Proof: Fix V with n points. Let χ be a coloring of V with a points in one color, $b=n-a$ points in the other. Let $S \subset V$ be a uniformly selected r-set. Then

$$
\operatorname{Pr}(S \text { is monochromatic under } \chi)=\frac{\binom{a}{r}+\binom{b}{r}}{\binom{n}{r}} .
$$

Assume $n=2 k$ is even. Then $\binom{a}{r}+\binom{b}{r}$ reaches the minimum when $a=b=k$. Thus
$\operatorname{Pr}(S$ is monochromatic under $\chi) \geq \frac{2\binom{k}{r}}{\binom{n}{r}}$.

continue

Let $p:=\frac{2\binom{k}{r}}{\binom{n}{r}}$.

continue

Let $p:=\frac{2\binom{k}{r}}{\binom{n}{r}}$.
Pick $m r$-edges S_{1}, \ldots, S_{m} uniformly and independently from $\binom{V}{r}$.

continue

■ Pick $m r$-edges S_{1}, \ldots, S_{m} uniformly and independently from $\binom{V}{r}$.
Let $H=(V, E)$ where $E=\left\{S_{1}, \ldots, S_{m}\right\}$.

continue

- Pick $m r$-edges S_{1}, \ldots, S_{m} uniformly and independently from $\binom{V}{r}$.
■ Let $H=(V, E)$ where $E=\left\{S_{1}, \ldots, S_{m}\right\}$.
For each coloring χ, let A_{χ} be the event that none of S_{i} are monochromatic.

$$
\operatorname{Pr}\left(A_{\chi}\right) \leq(1-p)^{m}
$$

continue

- Pick $m r$-edges S_{1}, \ldots, S_{m} uniformly and independently from $\binom{V}{r}$.
■ Let $H=(V, E)$ where $E=\left\{S_{1}, \ldots, S_{m}\right\}$.
For each coloring χ, let A_{χ} be the event that none of S_{i} are monochromatic.

$$
\begin{gathered}
\operatorname{Pr}\left(A_{\chi}\right) \leq(1-p)^{m} \\
\operatorname{Pr}\left(\vee_{\chi} A_{\chi}\right) \leq \sum_{\chi} \operatorname{Pr}\left(A_{\chi}\right) \leq 2^{n}(1-p)^{m} .
\end{gathered}
$$

continue

Choose $m=\left\lceil\frac{n \ln 2}{p}\right\rceil$. Then $2^{n}(1-p)^{m}<1$. There is a positive probability that H does not have property B .

continue

Choose $m=\left\lceil\frac{n \ln 2}{p}\right\rceil$. Then $2^{n}(1-p)^{m}<1$. There is a positive probability that H does not have property B . Hence,

$$
m(r) \leq\left\lceil\frac{n \ln 2}{p}\right\rceil .
$$

continue

Choose $m=\left\lceil\frac{n \ln 2}{p}\right\rceil$. Then $2^{n}(1-p)^{m}<1$. There is a positive probability that H does not have property B . Hence,

$$
\begin{aligned}
& m(r) \leq\left\lceil\frac{n \ln 2}{p}\right\rceil . \\
& p=\frac{2\binom{k}{r}}{\binom{n}{r}} \\
&=2^{1-r} \prod_{i=0}^{r-1} \frac{n-2 i}{n-i} \\
& \approx 2^{1-r} e^{-r^{2} / 2 n} .
\end{aligned}
$$

Optimization

Choose $n=\frac{r^{2}}{2}$ to minimize n / p.

Optimization

Choose $n=\frac{r^{2}}{2}$ to minimize n / p. We get

$$
\begin{aligned}
m & =\left\lceil\frac{n \ln 2}{p}\right\rceil \\
& \approx(\ln 2) 2^{r-1} n e^{r^{2} / 2 n} \\
& \approx \frac{e \ln 2}{4} r^{2} 2^{r} .
\end{aligned}
$$

Optimization

Choose $n=\frac{r^{2}}{2}$ to minimize n / p. We get

$$
\begin{aligned}
m & =\left\lceil\frac{n \ln 2}{p}\right\rceil \\
& \approx(\ln 2) 2^{r-1} n e^{r^{2} / 2 n} \\
& \approx \frac{e \ln 2}{4} r^{2} 2^{r} .
\end{aligned}
$$

Hence $m(r)<(1+o(1)) \frac{e \ln 2}{4} r^{2} 2^{r}$.

Property B problem

Beck [1978]:

$$
m(r) \geq r^{1 / 3-\epsilon} 2^{r} .
$$

Property B problem

Beck [1978]:

$$
m(r) \geq r^{1 / 3-\epsilon} 2^{r} .
$$

Radhakrishnan-Srinivasan [2000]: (best lower bound)

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right)
$$

Property B problem

Beck [1978]:

$$
m(r) \geq r^{1 / 3-\epsilon} 2^{r}
$$

Radhakrishnan-Srinivasan [2000]: (best lower bound)

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right)
$$

Theorem (Erdős [1964]): (best upper bound)

$$
m(r)<(1+o(1)) \frac{e \ln 2}{4} r^{2} 2^{r} .
$$

Property B problem

Beck [1978]:

$$
m(r) \geq r^{1 / 3-\epsilon} 2^{r} .
$$

Radhakrishnan-Srinivasan [2000]: (best lower bound)

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right)
$$

Theorem (Erdős [1964]): (best upper bound)

$$
m(r)<(1+o(1)) \frac{e \ln 2}{4} r^{2} 2^{r}
$$

$$
m(2)=3, m(3)=7,20 \leq m(4) \leq 23 .
$$

A (k, l)-system

A family of pairs of sets $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is called a (k, l)-system if
■ for $1 \leq i \leq h,\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$.
■ for any $1 \leq i \neq j \leq h,\left|A_{i} \cap B_{j}\right| \neq \emptyset$.

$\mathbf{A}(k, l)$-system

A family of pairs of sets $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is called a (k, l)-system if
■ for $1 \leq i \leq h,\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$.

- for any $1 \leq i \neq j \leq h,\left|A_{i} \cap B_{j}\right| \neq \emptyset$.

Question: What is the maximum size that a (k, l)-system can have?

A (k, l)-system

A family of pairs of sets $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is called a (k, l)-system if
■ for $1 \leq i \leq h,\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$.

- for any $1 \leq i \neq j \leq h,\left|A_{i} \cap B_{j}\right| \neq \emptyset$.

Question: What is the maximum size that a (k, l)-system can have?
Theorem [Bollobás 1965]: If $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is a (k, l)-system, then $h \leq\binom{ k+l}{k}$.

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.
For each i, let X_{i} be the event all elements of A_{i} precede all those of B_{i} in π.

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.
For each i, let X_{i} be the event all elements of A_{i} precede all those of B_{i} in π.

$$
\operatorname{Pr}\left(X_{i}\right)=\frac{1}{\binom{k+l}{k}}
$$

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.
For each i, let X_{i} be the event all elements of A_{i} precede all those of B_{i} in π.

$$
\operatorname{Pr}\left(X_{i}\right)=\frac{1}{\binom{k+l}{k}}
$$

Observe that all X_{i} 's are disjoint events. We have

$$
1 \geq \operatorname{Pr}\left(\vee_{i=1}^{h} X_{i}\right)=\sum_{i=1}^{h} \operatorname{Pr}\left(X_{i}\right)=\frac{h}{\binom{k+l}{k}} .
$$

Sum-free sets

A subset A of an abelian group is called sum-free if $(A+A) \cap A=\emptyset$.

Sum-free sets

A subset A of an abelian group is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.

Sum-free sets

A subset A of an abelian group is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.
Proof: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Choose a prime $p>2 \max \left\{\left|b_{i}\right|\right\}_{i=1}^{n}$.

Sum-free sets

A subset A of an abelian group is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.
Proof: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Choose a prime $p>2 \max \left\{\left|b_{i}\right|\right\}_{i=1}^{n}$.
Let $C=\{k+1, k+2, \ldots, 2 k+1\}$. Then C is a sum-free set of \mathbb{Z}_{p}.

Sum-free sets

A subset A of an abelian group is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.
Proof: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Choose a prime $p>2 \max \left\{\left|b_{i}\right|\right\}_{i=1}^{n}$.
Let $C=\{k+1, k+2, \ldots, 2 k+1\}$. Then C is a sum-free set of \mathbb{Z}_{p}.
Randomly pick an integer x in $[1, p-1]$. Define

$$
A=\left\{b_{i}: x b_{i}(\bmod p) \in C\right\} .
$$

continue

Claim: A is a sum-free set.
Let X_{i} be the indicator random variable that $b_{i} \in A$.

$$
\operatorname{Pr}\left(X_{i}\right)=\frac{|C|}{p-1}=\frac{k+1}{3 k-1}>\frac{1}{3} .
$$

continue

Claim: A is a sum-free set.
Let X_{i} be the indicator random variable that $b_{i} \in A$.

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i}\right)=\frac{|C|}{p-1}=\frac{k+1}{3 k-1}>\frac{1}{3} . \\
\mathrm{E}(|A|)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}\right)>\frac{n}{3} .
\end{gathered}
$$

continue

Claim: A is a sum-free set.
Let X_{i} be the indicator random variable that $b_{i} \in A$.

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i}\right)=\frac{|C|}{p-1}=\frac{k+1}{3 k-1}>\frac{1}{3} . \\
\mathrm{E}(|A|)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}\right)>\frac{n}{3}
\end{gathered}
$$

There is a subset $A \subset B$ with greater than $n / 3$ elements.

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset\binom{[n]}{k}$. A family \mathcal{F} of k-sets is called intersecting if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset\binom{[n]}{k}$. A family \mathcal{F} of k-sets is called intersecting if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.

Erdős-Ko-Rado Theorem: If $n \geq 2 k$ and \mathcal{F} is an intersecting family of k-sets in $[n]$, then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset\binom{[n]}{k}$. A family \mathcal{F} of k-sets is called intersecting if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.
Erdös-Ko-Rado Theorem: If $n \geq 2 k$ and \mathcal{F} is an intersecting family of k-sets in [n], then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

This is tight since we can take $\mathcal{F}=\left\{F \in\binom{[n]}{k}: 1 \in F\right\}$.

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_{n}$ chosen randomly. List the elements of $[n]$ in the order of σ on a cycle C_{σ}.

- For $A \in \mathcal{F}, X_{A}$ be the indicator variable that A forms a consecutive block on C_{σ}.

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_{n}$ chosen randomly. List the elements of $[n]$ in the order of σ on a cycle C_{σ}.

- For $A \in \mathcal{F}, X_{A}$ be the indicator variable that A forms a consecutive block on C_{σ}.
- $X:=\sum_{A \in \mathcal{F}} X_{A}$: the number of consecutive blocks in \mathcal{F}.

$$
\mathrm{E}(X)=\sum_{A \in \mathcal{F}} \mathrm{E}\left(X_{A}\right)=\frac{n|\mathcal{F}|}{\binom{n}{k}} .
$$

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_{n}$ chosen randomly. List the elements of $[n]$ in the order of σ on a cycle C_{σ}.

- For $A \in \mathcal{F}, X_{A}$ be the indicator variable that A forms a consecutive block on C_{σ}.
- $X:=\sum_{A \in \mathcal{F}} X_{A}$: the number of consecutive blocks in \mathcal{F}.

$$
\mathrm{E}(X)=\sum_{A \in \mathcal{F}} \mathrm{E}\left(X_{A}\right)=\frac{n|\mathcal{F}|}{\binom{n}{k}} .
$$

Since \mathcal{F} is intersecting, $X \leq k$. We have $\frac{n|\mathcal{F}|}{\binom{n}{k}} \leq k$.

Erdős’ vocabulary

Erdős's vocabulary meaning
proof from The Book \quad beautiful mathematical proof

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	

Erdős’ vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture
torture	

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	wifes
slaves	husbands
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture
torture	to give an oral exam to a student

