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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviations (1-2 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Linearity of Expectation

■ Ramsey numbers
■ Tournament
■ Dominating set
■ Property B problem
■ A (k, l)-system
■ Sum-free sets
■ Erdős-Ko-Rado Theorem
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Paul Erdős: 1913–1996
1525 papers
511 coauthors

Main contributions:

■ Ramsey theory
■ Probabilistic method
■ Extremal combinatorics
■ Additive number theory



Notation
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A graph G consists of two sets V and E.

- V is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of
vertices.

Complete graphs Kn:

K 3 K 4 K 5 K 6
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Ramsey number R(k, l): the smallest integer n such that
in any two-coloring of the edges of a complete graph on n
vertices Kn by red and blue, either there is a red Kk or a
blue Kl.

Major question: How large is R(k, k)?

Proposition (by Erdős): If
(

n
2

)

21−(
k

2) < 1, then
R(k, k) > n. Thus

R(k, k) >
k

e
√
2
2k/2.



Ramsey number R(3, 3) = 6
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■ If edges of K6 are 2-colored then there exists a
monochromatic triangle.
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■ If edges of K6 are 2-colored then there exists a
monochromatic triangle.

■ There exists a 2-coloring of edges of K5 with no
monochromatic triangle.
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To prove R(k, k) > n, we need construct a 2-coloring of Kn

so that it contains no red Kk or blue Kk.
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To prove R(k, k) > n, we need construct a 2-coloring of Kn

so that it contains no red Kk or blue Kk.

Make the set of all 2-colorings of Kn into a probability
space, then show the event “ no red Kk or blue Kk” with
positive probability.
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Finite probability space (Ω, P ):

■ Ω := {s1, s2, . . . , sn}: a set of n elements.

■ P : Ω → [0, 1]: a probability measure. View P as a
vector (p1, p2, . . . , pn), where 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1.

■ An event A: a subset of Ω.

■ Probability of A: Pr(A) =
∑

si∈A pi.

■ Two events A and B are independent if

Pr(AB) = Pr(A)Pr(B).



Proof of Proposition 1:
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Color every edge of Kn independently either red or blue,
where each color is equally likely.

For any fixed set R of k vertices, let AR be the event that
all pairs with both ends in R are either all red or all blue.

Pr(AR) = 21−(
k

2).

Pr(∨RAR) ≤
∑

R

Pr(AR) =

(

n

k

)

21−(
k

2) < 1.

Hence Pr(∧RĀR) = 1− Pr(∨RAR) > 0.



Estimation of n
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Since
(

n
k

)

≤ 1
e

(

en
k

)k
for all n ≥ k ≥ 1, we have

(

n

k

)

21−(
k

2) ≤ 1

e

(en

k

)k

21−(
k

2)

≤ 2

e

( en

k2(k−1)/2

)k

< 1

provided n ≤ k
e
√
2
2k/2.
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Since
(

n
k

)

≤ 1
e

(

en
k

)k
for all n ≥ k ≥ 1, we have

(

n

k

)

21−(
k

2) ≤ 1

e

(en

k

)k

21−(
k

2)

≤ 2

e

( en

k2(k−1)/2

)k

< 1

provided n ≤ k
e
√
2
2k/2.

Hence,

R(k, k) >
k

e
√
2
2k/2. �
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Erdős [1947]:
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Erdős [1947]:

R(k, k) > (1 + o(1))
1

e
√
2
k2k/2.

Spencer [1990]:

R(k, k) > (1 + o(1))
1

e
k2k/2.

Spencer [1975] (using Lovasz Local Lemma)

R(k, k) > (1 + o(1))

√
2

e
k2k/2.
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A trivial bound:

R(k, k) ≤
(

2k − 2

k − 1

)

.

Thomason [1988]:

R(k, k) ≤ k−1/2+c/
√
log k

(

2k − 2

k − 1

)

.

Conlon [2009]:

R(k, k) ≤ k−C log k

log log k

(

2k − 2

k − 1

)

.
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Erdős problems:

■ $100 for proving the limit limk→∞R(k, k)1/k exists.

■ $250 for determining the value of limk→∞R(k, k)1/k if it
exists.

If limk→∞R(k, k)1/k exists, then it is between
√
2 to 4.
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■ V : a set of n players.

■ (x, y) means player x beats y.

■ Tournament on V : an orientation T = (V,E) of
complete graphs on V . For each pair of plays x and y,
either (x, y) or (y, x) is in E.

We say T has property Sk if for every set of k players there
is one beats all.



A question
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Question (by Schütte): Is there a tournament satisfying
the property Sk?

Theorem (Erdős [1963]) If
(

n
k

)

(1− 2−k)n−k < 1, then
there is a tournament on n vertices that has the property Sk.

Proof: Consider a random tournament on V . For each pair
x and y, the choice of (x, y) and (y, x) is equally likely.

■ K: a fixed subset of size k of V .
■ AK: the event that there is no vertex that beats all the

members of K.

Pr(AK) = (1− 2−k)n−k.



Proof continues
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Pr
(

∨K∈(Vk)
AK

)

≤
∑

K∈(Vk)

Pr(AK)

=

(

n

k

)

(1− 2−k)n−k < 1.

Therefore, with positive probability, no event AK occurs;
that is, there is a tournament on n vertices that has the
property Sk.



Estimation of n
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Let f(k) denote the minimum possible number of vertices of
a tournament that has the property Sk.
On one hand, since

(

n
k

)

< (en/k)k and

(1− 2−k)n−k < 2(n−k)/2k , we have

f(k) ≤ (1 + o(1)) ln 2 · k2 · 2k.

On the other hand, Szekeres proved

f(k) ≥ c1k2
k.
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■ (Ω, P ): a probability space.

■ X : Ω → R: a random variable.

■ The expectation of X, denoted by E(X), is defined as

E(X) =
∑

v∈Ω
X(v)pv.

Linearity of expectation:

E(X + Y ) = E(X) + E(Y ).
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A dominating set of a graph G = (V,E) is a set U ⊆ V
such that vertex v ∈ V − U has at least one neighbor in U .

Theorem: Let G = (V,E) be a graph on n vertices, with
minimum degree δ > 1. Then G has a dominating set of at

most 1+ln(δ+1)
δ+1 n.
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■ p ∈ [0, 1]: a probability chosen later.

■ X: a random set, whose vertex is picked randomly and
independently with probability p.

■ Y := YX : the set of vertices in V −X that do not have
any neighbor in X.

E(|X|) =
∑

v

Pr(v ∈ X) = np.

E(|Y |) =
∑

v

Pr(v ∈ Y )

≤ n(1− p)δ+1.
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Let U = X ∪ YX . The set U is clearly a dominating set.
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Let U = X ∪ YX . The set U is clearly a dominating set. We
have

E(|U |) = E(X) + E(Y )

≤ np+ n(1− p)δ+1

≤ n(p+ e−p(δ+1)).

Choose p = ln(δ+1)
δ+1 to minimize the upper bound. There is a

dominating set of size at most

1 + ln(δ + 1)

δ + 1
n.
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H = (V,E) is an r-uniform hypergraph (r-graph, for short).

■ V : the set of vertices
■ E: the set of edges, each edge has cardinality r.

A 3-uniform loose cycle A 3-uniform tight cycle
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is a two-coloring of V such that no edge is monochromatic.
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We say a r-uniform hypergraph H has property B if there
is a two-coloring of V such that no edge is monochromatic.

Let m(r) denote the minimum possible number of edges of
an r-uniform hypergraph that does not have property B.

Proposition [Erdős (1963)] Every r-uniform hypergraph
with less than 2r−1 edges has property B. Therefore
m(r) ≥ 2r−1.
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Let H be an r-uniform hypergraph with less than 2r−1

edges. Color V randomly by two colors. For each edge
e ∈ E, let Ae be the event that e is monochromatic.

Pr(Ae) = 21−r.
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Let H be an r-uniform hypergraph with less than 2r−1

edges. Color V randomly by two colors. For each edge
e ∈ E, let Ae be the event that e is monochromatic.

Pr(Ae) = 21−r.

Therefore,

Pr (∨e∈EAe) ≤
∑

e∈E
Pr(Ae) < 1.

There is a two-coloring without monochromatic edges. �
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Theorem (Erdős [1964]): m(r) < (1 + o(1))e ln 24 r22r.

Proof: Fix V with n points. Let χ be a coloring of V with
a points in one color, b = n− a points in the other. Let
S ⊂ V be a uniformly selected r-set. Then

Pr(S is monochromatic under χ) =

(

a
r

)

+
(

b
r

)

(

n
r

) .

Assume n = 2k is even. Then
(

a
r

)

+
(

b
r

)

reaches the
minimum when a = b = k. Thus

Pr(S is monochromatic under χ) ≥ 2
(

k
r

)

(

n
r

) .
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■ Let p :=
2(kr)
(nr)

.

■ Pick m r-edges S1, . . . , Sm uniformly and independently
from

(

V
r

)

.

■ Let H = (V,E) where E = {S1, . . . , Sm}.

For each coloring χ, let Aχ be the event that none of Si are
monochromatic.

Pr(Aχ) ≤ (1− p)m.

Pr(∨χAχ) ≤
∑

χ

Pr(Aχ) ≤ 2n(1− p)m.
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positive probability that H does not have property B.
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p ⌉. Then 2n(1− p)m < 1. There is a

positive probability that H does not have property B. Hence,

m(r) ≤ ⌈n ln 2

p
⌉.
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Choose m = ⌈n ln 2
p ⌉. Then 2n(1− p)m < 1. There is a

positive probability that H does not have property B. Hence,

m(r) ≤ ⌈n ln 2

p
⌉.

p =
2
(

k
r

)

(

n
r

)

= 21−r
r−1
∏

i=0

n− 2i

n− i

≈ 21−re−r2/2n.
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Choose n = r2

2 to minimize n/p. We get

m = ⌈n ln 2

p
⌉

≈ (ln 2)2r−1ner
2/2n

≈ e ln 2

4
r22r.
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Choose n = r2

2 to minimize n/p. We get

m = ⌈n ln 2

p
⌉

≈ (ln 2)2r−1ner
2/2n

≈ e ln 2

4
r22r.

Hence m(r) < (1 + o(1))e ln 24 r22r. �
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Beck [1978]:

m(r) ≥ r1/3−ǫ2r.

Radhakrishnan-Srinivasan [2000]: (best lower bound)

m(r) ≥ Ω

(

( r

ln r

)1/2

2r
)
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Beck [1978]:

m(r) ≥ r1/3−ǫ2r.

Radhakrishnan-Srinivasan [2000]: (best lower bound)

m(r) ≥ Ω

(

( r

ln r

)1/2

2r
)

.

Theorem (Erdős [1964]): (best upper bound)

m(r) < (1 + o(1))
e ln 2

4
r22r.

m(2) = 3, m(3) = 7, 20 ≤ m(4) ≤ 23.
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A family of pairs of sets F = {(Ai, Bi)}hi=1 is called a
(k, l)-system if

■ for 1 ≤ i ≤ h, |Ai| = k, |Bi| = l, Ai ∩Bi = ∅.
■ for any 1 ≤ i 6= j ≤ h, |Ai ∩Bj| 6= ∅.
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A family of pairs of sets F = {(Ai, Bi)}hi=1 is called a
(k, l)-system if

■ for 1 ≤ i ≤ h, |Ai| = k, |Bi| = l, Ai ∩Bi = ∅.
■ for any 1 ≤ i 6= j ≤ h, |Ai ∩Bj| 6= ∅.

Question: What is the maximum size that a (k, l)-system
can have?

Theorem [Bollobás 1965]: If F = {(Ai, Bi)}hi=1 is a
(k, l)-system, then h ≤

(

k+l
k

)

.
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i=1(Ai ∪Bi) and consider a random order π of V .



Proof

Topic Course on Probabilistic Methods (week 1) Linyuan Lu, University of South Carolina – 33 / 38

Let V = ∪h
i=1(Ai ∪Bi) and consider a random order π of V .

For each i, let Xi be the event all elements of Ai precede all
those of Bi in π.
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Let V = ∪h
i=1(Ai ∪Bi) and consider a random order π of V .

For each i, let Xi be the event all elements of Ai precede all
those of Bi in π.

Pr(Xi) =
1

(

k+l
k

) .
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Let V = ∪h
i=1(Ai ∪Bi) and consider a random order π of V .

For each i, let Xi be the event all elements of Ai precede all
those of Bi in π.

Pr(Xi) =
1

(

k+l
k

) .

Observe that all Xi’s are disjoint events. We have

1 ≥ Pr(∨h
i=1Xi) =

h
∑

i=1

Pr(Xi) =
h

(

k+l
k

) .
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contains a sum-free subset A of size |A| > 1
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(A+ A) ∩ A = ∅.
Theorem [Erdős 1965]: Every set B of n nonzero integers
contains a sum-free subset A of size |A| > 1
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Proof: Let B = {b1, b2, . . . , bn}. Choose a prime
p > 2max{|bi|}ni=1.

Let C = {k + 1, k + 2, . . . , 2k + 1}. Then C is a sum-free
set of Zp.
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A subset A of an abelian group is called sum-free if
(A+ A) ∩ A = ∅.
Theorem [Erdős 1965]: Every set B of n nonzero integers
contains a sum-free subset A of size |A| > 1

3n.

Proof: Let B = {b1, b2, . . . , bn}. Choose a prime
p > 2max{|bi|}ni=1.

Let C = {k + 1, k + 2, . . . , 2k + 1}. Then C is a sum-free
set of Zp.

Randomly pick an integer x in [1, p− 1]. Define

A = {bi : xbi( mod p) ∈ C}.
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Claim: A is a sum-free set.
Let Xi be the indicator random variable that bi ∈ A.

Pr(Xi) =
|C|
p− 1

=
k + 1

3k − 1
>

1

3
.
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Claim: A is a sum-free set.
Let Xi be the indicator random variable that bi ∈ A.

Pr(Xi) =
|C|
p− 1

=
k + 1

3k − 1
>

1

3
.

E(|A|) =
n

∑

i=1

Pr(Xi) >
n

3
.
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Claim: A is a sum-free set.
Let Xi be the indicator random variable that bi ∈ A.

Pr(Xi) =
|C|
p− 1

=
k + 1

3k − 1
>

1

3
.

E(|A|) =
n

∑

i=1

Pr(Xi) >
n

3
.

There is a subset A ⊂ B with greater than n/3 elements. �
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(

[n]
k

)

. A family F of k-sets is called intersecting if
for any A,B ∈ F , A ∩B 6= ∅.
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Let F ⊂
(

[n]
k

)

. A family F of k-sets is called intersecting if
for any A,B ∈ F , A ∩B 6= ∅.
Erdős-Ko-Rado Theorem: If n ≥ 2k and F is an
intersecting family of k-sets in [n], then

|F| ≤
(

n− 1

k − 1

)

.
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Let F ⊂
(

[n]
k

)

. A family F of k-sets is called intersecting if
for any A,B ∈ F , A ∩B 6= ∅.
Erdős-Ko-Rado Theorem: If n ≥ 2k and F is an
intersecting family of k-sets in [n], then

|F| ≤
(

n− 1

k − 1

)

.

This is tight since we can take F = {F ∈
(

[n]
k

)

: 1 ∈ F}.
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Katona (1974) proof: Consider a random permutation
σ ∈ Sn chosen randomly. List the elements of [n] in the
order of σ on a cycle Cσ.

■ For A ∈ F , XA be the indicator variable that A forms a
consecutive block on Cσ.
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Katona (1974) proof: Consider a random permutation
σ ∈ Sn chosen randomly. List the elements of [n] in the
order of σ on a cycle Cσ.

■ For A ∈ F , XA be the indicator variable that A forms a
consecutive block on Cσ.

■ X :=
∑

A∈F XA: the number of consecutive blocks in F .

E(X) =
∑

A∈F
E(XA) =

n|F|
(

n
k

) .
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Katona (1974) proof: Consider a random permutation
σ ∈ Sn chosen randomly. List the elements of [n] in the
order of σ on a cycle Cσ.

■ For A ∈ F , XA be the indicator variable that A forms a
consecutive block on Cσ.

■ X :=
∑

A∈F XA: the number of consecutive blocks in F .

E(X) =
∑

A∈F
E(XA) =

n|F|
(

n
k

) .

Since F is intersecting, X ≤ k. We haven|F|
(nk)

≤ k. �
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Erdős’ vocabulary

Topic Course on Probabilistic Methods (week 1) Linyuan Lu, University of South Carolina – 38 / 38
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Erdős’ vocabulary

Topic Course on Probabilistic Methods (week 1) Linyuan Lu, University of South Carolina – 38 / 38
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Erdős’s vocabulary meaning

proof from The Book beautiful mathematical proof
epsilon children
bosses wifes
slaves husbands
died people who stopped doing math
left physically died

poison alcoholic drinks
noise music

captured married
liberated divorced
preach to give a mathematical lecture
torture to give an oral exam to a student
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