Math777: Graph Theory (II)
 Spring, 2018
 Homework 4, Solution

1. [page 305, \#1] An oriented complete graph is called a tournament. Show that every tournament contains a (directed) Hamilton path.
Proof: Let $P=v_{1} v_{2} \cdots v_{k}$ be a longest directed path. If P contains all vertices, then we are done. Otherwise, there is a vertex u not on the path P. Since P can not be extended, we must have edge directions $v_{1} \rightarrow u$ and $u \rightarrow V_{k}$. There is an index i so the directions are changing: $v_{i} \rightarrow u$ and $u \rightarrow v_{i+1}$. But now $v_{1} \cdots v_{i} u v_{i+1} \cdots v_{k}$ is a longer path. Contradiction.
2. [page 305, \#2] Show that every uniquely 3-edge-colorable cubic graph is hamiltonian. ("Unique" means that all 3-edge-colorings induce the same edge partition.)
Proof: Suppose G is a uniquely 3-edge-colorable cubic graph. Let $E(G)=$ $E_{1} \cup E_{2} \cup E_{3}$ are the color partition. Note that each E_{i} is a perfect matching. Thus $E_{1} \cup E_{2}$ is a disjoint union of even cycles. If $E_{1} \cup E_{2}$ consists of only one cycle, then this cycle is the Hamilton cycle. Otherwise, say $E_{1} \cup E_{2}$ contains more than one cycle. Say one of the cycles is C, we can exchanges the edges in C : Let $E_{1}^{\prime}=\left(E_{2} \cap E(C)\right) \cup\left(E_{1}-E(C)\right)$ and $E_{2}^{\prime}=\left(E_{1} \cap E(C)\right) \cup\left(E_{2}-E(C)\right)$. Then $E_{1}^{\prime} \cup E_{2}^{\prime} \cup E_{3}$ is another color partition. Contradiction.
3. [page 305, \#5] Find a graph that is 1-tough but not hamiltonian.

Solution: The following graph is 1-tough but not Hamiltonian.

4. [page 306, \#7] Find a hamiltonian graph whose degree sequence is not hamiltonian.
Solution: C_{n} for $n \geq 6 .(2,2, \ldots, 2)$ is not hamiltonian.
5. [page 306, \#9] Prove that the square G^{2} of a k-connected graph G is k-tough.
Proof: For any set S, if $G^{2}-S$ has $t \geq 2$ components, say $C_{1}, C_{2}, \ldots, C_{t}$, then we need show that $|S| \geq k t$. Let $\Gamma_{G}\left(C_{i}\right)$ be the vertex boundary of C_{i} in G, then $\Gamma_{G}\left(C_{i}\right) \subset S$. Since each pair C_{i}, C_{j} are at least distance 3
away in G. These sets are disjoint. Furthermore, since G is k-connected. we have

$$
\left|\Gamma_{G}\left(C_{i}\right)\right| \geq k
$$

Thus $|S| \geq k t$. This proves that G^{2} is k-tough.
6. [page 306, \#11] Find a connected graph G whose square G^{2} has no Hamilton cycle.
Solution: Let G be the graph obtained by subdividing each edge of S_{4} once. Then G^{2} is the graph shown in Problem 3, which is not Hamiltonian.

