Math777: Graph Theory (II) Spring, 2018 Homework 3, solution

1. [page 289, #10] Prove the following result of Schur: for every $k \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that, for every partition of $\{1, 2, \ldots, n\}$ into k sets, at least one of the subsets contains numbers x, y, z such that x + y = z.

Proof: Choose $n = R_k(3)$, the Ramsey number such that any k-coloring of K_n contains a monochromatic triangle. Given a color $c: [n] \to [k]$, we construct an edge coloring of K_n : color edge ij by c(|i - j|). By the Ramsey theorem for graphs, there is a monochromatic triangle $\{i, j, k\}$; assume i < j < k. Then we set x = ji, y = kj and z = ki. We have c(x) = c(y) = c(z) and x + y = z.

2. [page 289, #11] A family of sets is called a Δ -system if every two of the sets have the same intersection. Show that every infinite family of sets of the same finite cardinality contains an infinite Δ -system.

Proof: This is the **Erdos-Rado**'s theorem: There is a function f(k, r) so that every family \mathcal{F} of k-sets with more than f(k, r) members contains a Δ -system of size r.

Let \mathcal{F} be a family of k-sets without a Δ -system of size r. Let A_1, A_2, \ldots, A_t be a maximum subfamily of pairwise disjoint sets in \mathcal{F} . Since a family of pairwise disjoint sets is a Δ -system, we must have t < r. Now let $A = \bigcup_{i=1}^{t} A_i$. For every $a \in A$ consider the family $\mathcal{F}_a = \{S \setminus \{a\} : S \in \mathcal{F}, a \in S\}$. Now, the size of A is at most (r-1)k and the size of each \mathcal{F}_a is at most f(k-1,r). We get that $f(k,r) \leq (r-1)kf(k-1,r)$. This gives $f(k,r) \leq (r-1)^k \times k!$.

3. [page 290, #14] Prove that $2^c < R(2, c, 3) \leq 3c!$ for every $c \in \mathbb{N}$.

Proof: Lower bound: let $n = 2^c$ and consider the *c*-coloring of K_n so that an edge ij receives the color l if $2^{l-1} \leq |i-j| < 2^l$. Since each interval $[2^{l-1}, 2^l - 1]$ contains no triple x < y < z so that x + y = z. There is no monochromatic triangle in this coloring. Thus, $R(2, c, 3) > 2^c$.

Upper bound: For each vertex v and a fixed color i, the neighbors of v in the color i can have at most R(2, c - 1, 3) vertices. Thus we have a recursive formula:

$$R(2, c, 3) \le cR(2, c - 1, 3).$$

Since R(2, 1, 3) = 3, we have

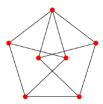
$$R(2,c,3) \le 3c!$$

4. [page 290, #18] Show that any Kuratowski set $\{\mathcal{P}_1, \ldots, \mathcal{P}_k\}$ of a given collection \mathcal{C} of non-trivial graph properties is unique up to equivalence.

Proof: Let $\{Q_1, \ldots, Q_l\}$ be another Kuratowski set. Assume Q_l is a minimum element under the partial ordering. By the definition, there is a P_i with $P_i \leq Q_l$. For this P_i , there is a Q_j such that $Q_j \leq P_i$. We get $Q_j \leq P_i \leq Q_1$. Since Q_1 is minimum, we must have j = 1. Thus P_i and Q_1 are equivalent. Delete these two elements from the two sets the do the induction. We conclude that $\{\mathcal{P}_1, \ldots, \mathcal{P}_k\}$ are equivalent to $\{\mathcal{Q}_1, \ldots, \mathcal{Q}_l\}$.

5. Let us 3-color the points of the plane. Prove that there will be two points at distance 1 with the same color.

Proof: The Moser Spindle graph G is the 7-node unit-distance graph shown below:



It is know that $\chi(G) = 4$. Thus any 3-color of the 7-nodes contains a monochromatic edge, which has distance 1 in the plane.

6. Let us k-color all non-empty subsets of an n-element set. Prove that if n is large enough, there are two disjoint non-empty subsets X and Y such that $X, Y, X \cup Y$ have the same color.

Proof: Let n = R(2, k, 3). Assume that all non-empty subsets of [n] are k-colored with colors $1, 2, \ldots, k$. Now we construct a k-edge coloring of K_n . Color each edge ij by the color of the interval [i, j - 1]. By the definition of Ramsey number R(2, k, 3), there is a monochromatic triangle ijl with i < j < l. Let X = [i, j - 1], Y = [j, l - 1], and $X \cup Y = [i, l - 1]$. These three sets are in the same color.