# Math777: Graph Theory (II) <br> Spring, 2018 <br> Homework 3, due Thursday, Mar. 8 

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly.

1. [page 289, \#10 ] Prove the following result of Schur: for every $k \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that, for every partition of $\{1,2, \ldots, n\}$ into $k$ sets, at least one of the subsets contains numbers $x, y, z$ such that $x+y=z$.
2. [page 289, \#11] A family of sets is called a $\Delta$-system if every two of the sets have the same intersection. Show that every infinite family of sets of the same finite cardinality contains an infinite $\Delta$-system.
3. [page 290, \#14 ] Prove that $2^{c}<R(2, c, 3) \leq 3 c$ ! for every $c \in \mathbb{N}$.
4. [page $290, \# \mathbf{1 8}]$ Show that any Kuratowski set $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}$ of a given collection $\mathcal{C}$ of non-trivial graph properties is unique up to equivalence.
5. Let us 3 -color the points of the plane. Prove that there will be two points at distance 1 with the same color.
6. Let us $k$-color all non-empty subsets of an $n$-element set. Prove that if $n$ is large enough, there are two disjoint non-empty subsets $X$ and $Y$ such that $X, Y, X \cup Y$ have the same color.
