Math777: Graph Theory (II) Homework 2 Solutions

1. [page 195, \#4] Determine the value of $e x\left(n, K_{1, r}\right)$ for all $r, n \in \mathbb{N}$.

Solution: We would like to determine how many edges a graph G on n vertices can have before a $K_{1, r}$ subgraph is forced. Note that G has a $K_{1, r}$ subgraph if and only if $\Delta(G) \geq r$. Thus, we must determine the maximum number of edges G can have and still maintain $\Delta(G)<r$. We consider two cases:
Case 1: $n \leq r$. Clearly, if $n \leq r$, we must have $\Delta(G)<r$. In this case, a complete graph on n vertices has no $K_{1, r}$ subgraph and $e x\left(n, K_{1, r}\right)=\binom{n}{2}$.
Case 2: $n>r$. In this case, we try to draw edges on the vertices of G so that $d(v)=r-1$ for all $v \in V(G)$. While it may not be possible to draw an r - 1-regular graph on n vertices, we are able to draw $\left\lfloor\frac{(r-1) \cdot n}{2}\right\rfloor$ edges. Thus ex $\left(n, K_{1, r}\right)=\left\lfloor\frac{(r-1) \cdot n}{2}\right\rfloor$.
2. [page 195, \#5] Given $k>0$, determine the extremal graphs without a matching of size k.

Solution: Let $n \in \mathbb{N}$ and $k>0$. We will consider two cases:
Suppose $n<2 k$. The complete graph $K_{2 n}$ will certainly have no matching of size k. This graph $K_{2 n}$ has $\binom{n}{2}$ edges, and we certainly cannot better. Thus $K_{2 n}$ is the extremal graph in this case.
Suppose $n \geq 2 k$. We construct the extremal graph in the following way: First, construct a K_{k-1}. Then, draw an edge from each of the remaining $(n-k+1)$ vertices to each of the edges in the K_{k-1}. Then every edge in a maximal matching will be incident to a vertex in the K_{k-1}. Thus, the size of the maximal matching on this graph is $k-1$. This graph has $\binom{k-1}{2}+(n-k+1)(k-1)$ edges, and it is the extremal graph.
3. [page 195, \#9] Show that deleting at most $(m-s)(n-t) / s$ edges from a $K_{m, n}$ will never destroy all its $K_{s, t}$ subgraphs.

Solution: Let $M \cup N$ be the partition of the graph G obtained from $K_{m, n}$ by deleting these vertices. On the average, a vertex in M is losing $(m-s)(n-t) /(s m)$ edges. Picking a set S of s vertices with most degrees from M. Consider the induced subgraph $G[S \cup N]$. We have
$|E(G[S \cup N])| \geq s(n-(m-s)(n-t) /(s m))=(s-1) n+t-\frac{s}{m}(n-t)>(s-1) n+t$.
Thus in $G[S \cup N]$, there are a set T of t vertices from N with degree equal s. The induced subgraph $G[S \cup T]$ is a complete bipartite graph $K_{s, t}$.
4. [page 195, \#11] Let $1 \leq r \leq n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where $|A|=|B|=n$, and assume that $K_{r, r} \not \subset G$.
Show that

$$
\sum_{x \in A}\binom{d(x)}{r} \leq(r-1)\binom{n}{r}
$$

Use it to deduce $e x\left(n, K_{r, r}\right) \leq c n^{2-1 / r}$.
Solution: Let $1 \leq r \leq n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where $|A|=|B|=n$. Assume $K_{r, r} \not \subset G$. Let $d(x)$ denote the degree of vertex $x \in A$, and let $N(x)$ denote the neighborhood of x. Note that $N(x)$ contains $\binom{d(x)}{r} r$-tuples of vertices. If we take the sum of all such r-tuples over the neighborhoods of all $x \in A$, we get $\sum_{x \in A}\binom{d(x)}{r}$. Note that any r-tuple can be counted at most $r-1$ times. Otherwise, we would get a $K_{r, r}$ subgraph. Thus,

$$
\sum_{x \in A}\binom{d(x)}{r} \leq(r-1)\binom{n}{r}
$$

Due to the convexity of $\binom{d(x)}{r}$ (for $\left.d(x)>r-1\right), \sum_{x \in A}\binom{d(x)}{r}$ is minimized if the degrees of $x \in A$ are as even as possible. Thus,

$$
\sum_{x \in A}\binom{d(x)}{r} \geq n \cdot\binom{|E(G)| / n}{r} \geq n \cdot \frac{(|E(G)| / n-r)^{r}}{r!}
$$

Also,

$$
(r-1)\binom{n}{r} \leq(r-1) \frac{n^{r}}{r!}
$$

Therefore,

$$
n \cdot \frac{(|E(G)| / n-r)^{r}}{r!} \leq(r-1) \frac{n^{r}}{r!}
$$

If we solve this for $|E(G)|$, we conclude that $e x\left(n, K_{r, r}\right) \leq c n^{2-1 / r}$.
5. [page 196, \#11] Given a graph G with $\epsilon(G) \geq k \in \mathbb{N}$, find a minor $H \prec G$ such that $\delta(H) \geq k \geq|H| / 2$.

Solution: Let $k=1$. Let G be a graph with $\epsilon(G) \geq 1=k$. That means G has at least one edge. If we let H be a path P_{1}, H is certainly a minor of G, and $\delta(H)=k=|H| / 2=1$.

We proceed by induction. Let $n \in \mathbb{N}$. Suppose for all $k \leq n-1$, for every graph G with $\epsilon(G) \geq k$, we can find a minor $H \prec G$ such that $\delta(H) \geq k \geq|H| / 2$. Let G be a graph with $\epsilon(G) \geq n$. Pick the minimal minor $H \prec G$ such that $\delta(H) \geq k$, and let $x \in H$. Let us create a new graph H^{\prime} from H by removing x. Since $\delta(H) \geq k, x$ is not isolated, and the neighbors of x will have degree at least $k-1$ when x is removed. Since $\epsilon\left(H^{\prime}\right) \geq k-1$, by the inductive hypothesis, we can find a minor $H^{\prime \prime}$ of H^{\prime} that satisfies $\delta\left(H^{\prime \prime}\right) \geq k-1 \geq\left|H^{\prime \prime}\right| / 2$. When we add x back in, we still get $\delta(H) \geq k$. Since we are adding only one vertex, $\left|H^{\prime \prime}\right|$ goes up by at most $\frac{1}{2}$, so $k \geq|H| / 2$.
6. If a graph G_{n} contains no K_{4} and only contains $o(n)$ independent vertices, then $\left\|G_{n}\right\|<\left(\frac{1}{8}+o(1)\right) n^{2}$. (Hint: apply Szemerédi's Regularity Lemma.)

Solution: For any $\epsilon>0$, we apply Szemerédi's Regularity Lemma to G to get a regularity partition $V=V_{0} \cup V_{1} \cup \cdots \cup V_{k}$. We define an auxiliary graph R with the vertex set $\left\{V_{1}, \ldots, V_{k}\right\}$. A pair $\left(V_{i}, V_{j}\right)$ forms an edge of R if it is a regular pair with edge density at least 3ϵ. We claim:

Claim a: No regularity pair has density $d>\frac{1}{2}+2 \epsilon$.
Claim b: R is triangle-free.
Proof of Claim a: If a regular pair $\left(V_{i}, V_{j}\right)$ has density $d>\frac{1}{2}+2 \epsilon$. We claim that we can find a K_{4} in G. Call a vertex $v \in V_{i}$ is good if for any $B \subset V_{j}$ with $|B|>\epsilon\left|V_{j}\right|, v$ has at least $(d-\epsilon)$ neighbors in B. All vertices in V_{i} but a ϵ-fraction are good. Since the independent number of G is $o(n)$, there is an edge $x y$ in V_{i} so that both x and y are good. This implies $\left|N(x) \cap N(y) \cap V_{j}\right|>(d-\epsilon)^{2}\left|V_{j}\right|$. Thus inside $N(x) \cap N(y) \cap V_{j}$ contains an edge $s t$. The induced graph on $\{x, y, s, t\}$ is a K_{4}. Contradiction.
Proof of Claim b: Suppose that R contains a triangle $V_{i} V_{j} V_{s}$. We can define a vertex $v \in V_{i}$ is good in a similarly way. At least $(1-2 \epsilon) V_{i}$ vertices are good. Pick an edge $x y$ so that both x and y are good in V_{i}. Consider $N(x) \cap N(y) \cap V_{j}$ and $N(x) \cap N(y) \cap V_{s}$. Both sets have size at least $(d-\epsilon)^{2}\left|V_{i}\right|$. Thus we can select an edge $z w$ so that $z \in N(x) \cap N(y) \cap V_{j}$ and $w \in N(x) \cap N(y) \cap V_{s}$. Once again, we found a K_{4}. Contradiction.
Let $l=\left|V_{i}\right| \approx \frac{n}{k}$. Since R is triangle-free, R has at most $k^{2} / 4$ edges. The total number of edge in G can be bounded by

$$
\begin{aligned}
\left\|G_{n}\right\| & \leq\|R\|\left(\frac{1}{2}+2 \epsilon\right) l^{2}+\left(\binom{k}{2}-\|R\|\right) 3 \epsilon l^{2}+\epsilon k^{2} l^{2}+\epsilon k l^{2} \\
& \leq\left(\frac{1}{8}+20 \epsilon\right) n^{2}
\end{aligned}
$$

Now let $\epsilon \rightarrow 0$, we have $\left\|G_{n}\right\|<\left(\frac{1}{8}+o(1)\right) n^{2}$.

