
Math777: Graph Theory (II)
Homework 2 Solutions

1. [page 195, #4 ] Determine the value of ex(n,K1,r) for all r, n ∈ N.

Solution: We would like to determine how many edges a graph G on n
vertices can have before a K1,r subgraph is forced. Note that G has a
K1,r subgraph if and only if ∆(G) ≥ r. Thus, we must determine the
maximum number of edges G can have and still maintain ∆(G) < r. We
consider two cases:

Case 1: n ≤ r. Clearly, if n ≤ r, we must have ∆(G) < r. In this case, a
complete graph on n vertices has no K1,r subgraph and ex(n,K1,r) =

(
n
2

)
.

Case 2: n > r. In this case, we try to draw edges on the vertices of G so
that d(v) = r − 1 for all v ∈ V (G). While it may not be possible to draw

an r− 1-regular graph on n vertices, we are able to draw b (r−1)·n2 c edges.

Thus ex(n,K1,r) = b (r−1)·n2 c.

2. [page 195, #5 ] Given k > 0, determine the extremal graphs without a
matching of size k.

Solution: Let n ∈ N and k > 0. We will consider two cases:

Suppose n < 2k. The complete graph K2n will certainly have no matching
of size k. This graph K2n has

(
n
2

)
edges, and we certainly cannot better.

Thus K2n is the extremal graph in this case.

Suppose n ≥ 2k. We construct the extremal graph in the following way:
First, construct a Kk−1. Then, draw an edge from each of the remaining
(n − k + 1) vertices to each of the edges in the Kk−1. Then every edge
in a maximal matching will be incident to a vertex in the Kk−1. Thus,
the size of the maximal matching on this graph is k − 1. This graph has(
k−1
2

)
+ (n− k + 1)(k − 1) edges, and it is the extremal graph.

3. [page 195, #9 ] Show that deleting at most (m− s)(n− t)/s edges from a
Km,n will never destroy all its Ks,t subgraphs.

Solution: Let M ∪ N be the partition of the graph G obtained from
Km,n by deleting these vertices. On the average, a vertex in M is losing
(m−s)(n− t)/(sm) edges. Picking a set S of s vertices with most degrees
from M . Consider the induced subgraph G[S ∪N ]. We have

|E(G[S∪N ])| ≥ s(n−(m−s)(n−t)/(sm)) = (s−1)n+t− s

m
(n−t) > (s−1)n+t.

Thus in G[S∪N ], there are a set T of t vertices from N with degree equal
s. The induced subgraph G[S ∪ T ] is a complete bipartite graph Ks,t.
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4. [page 195, #11 ] Let 1 ≤ r ≤ n be integers. Let G be a bipartite graph
with bipartition {A,B}, where |A| = |B| = n, and assume that Kr,r 6⊂ G.

Show that

∑
x∈A

(
d(x)

r

)
≤ (r − 1)

(
n

r

)
.

Use it to deduce ex(n,Kr,r) ≤ cn2−1/r.

Solution: Let 1 ≤ r ≤ n be integers. Let G be a bipartite graph with
bipartition {A,B}, where |A| = |B| = n. Assume Kr,r 6⊂ G. Let d(x)
denote the degree of vertex x ∈ A, and let N(x) denote the neighborhood

of x. Note that N(x) contains
(
d(x)
r

)
r-tuples of vertices. If we take the

sum of all such r-tuples over the neighborhoods of all x ∈ A, we get∑
x∈A

(
d(x)
r

)
. Note that any r-tuple can be counted at most r − 1 times.

Otherwise, we would get a Kr,r subgraph. Thus,

∑
x∈A

(
d(x)

r

)
≤ (r − 1)

(
n

r

)
.

Due to the convexity of
(
d(x)
r

)
(for d(x) > r−1),

∑
x∈A

(
d(x)
r

)
is minimized

if the degrees of x ∈ A are as even as possible. Thus,

∑
x∈A

(
d(x)

r

)
≥ n ·

(
|E(G)|/n

r

)
≥ n · (|E(G)|/n− r)r

r!

Also,

(r − 1)

(
n

r

)
≤ (r − 1)

nr

r!

Therefore,

n · (|E(G)|/n− r)r

r!
≤ (r − 1)

nr

r!

If we solve this for |E(G)|, we conclude that ex(n,Kr,r) ≤ cn2−1/r.

5. [page 196, #11 ] Given a graph G with ε(G) ≥ k ∈ N, find a minor H ≺ G
such that δ(H) ≥ k ≥ |H|/2.

Solution: Let k = 1. Let G be a graph with ε(G) ≥ 1 = k. That means
G has at least one edge. If we let H be a path P1, H is certainly a minor
of G, and δ(H) = k = |H|/2 = 1.
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We proceed by induction. Let n ∈ N. Suppose for all k ≤ n − 1, for
every graph G with ε(G) ≥ k, we can find a minor H ≺ G such that
δ(H) ≥ k ≥ |H|/2. Let G be a graph with ε(G) ≥ n. Pick the minimal
minor H ≺ G such that δ(H) ≥ k, and let x ∈ H. Let us create a new
graph H ′ from H by removing x. Since δ(H) ≥ k, x is not isolated, and
the neighbors of x will have degree at least k−1 when x is removed. Since
ε(H ′) ≥ k− 1, by the inductive hypothesis, we can find a minor H ′′ of H ′

that satisfies δ(H ′′) ≥ k − 1 ≥ |H ′′|/2. When we add x back in, we still
get δ(H) ≥ k. Since we are adding only one vertex, |H ′′| goes up by at
most 1

2 , so k ≥ |H|/2.

6. If a graph Gn contains no K4 and only contains o(n) independent vertices,
then ||Gn|| < ( 1

8 + o(1))n2. (Hint: apply Szemerédi’s Regularity Lemma.)

Solution: For any ε > 0, we apply Szemerédi’s Regularity Lemma to G
to get a regularity partition V = V0∪V1∪ · · ·∪Vk. We define an auxiliary
graph R with the vertex set {V1, . . . , Vk}. A pair (Vi, Vj) forms an edge of
R if it is a regular pair with edge density at least 3ε. We claim:

Claim a: No regularity pair has density d > 1
2 + 2ε.

Claim b: R is triangle-free.

Proof of Claim a: If a regular pair (Vi, Vj) has density d > 1
2 + 2ε. We

claim that we can find a K4 in G. Call a vertex v ∈ Vi is good if for any
B ⊂ Vj with |B| > ε|Vj |, v has at least (d− ε) neighbors in B. All vertices
in Vi but a ε-fraction are good. Since the independent number of G is
o(n), there is an edge xy in Vi so that both x and y are good. This implies
|N(x) ∩N(y) ∩ Vj | > (d− ε)2|Vj |. Thus inside N(x) ∩N(y) ∩ Vj contains
an edge st. The induced graph on {x, y, s, t} is a K4. Contradiction.

Proof of Claim b: Suppose that R contains a triangle ViVjVs. We can
define a vertex v ∈ Vi is good in a similarly way. At least (1−2ε)Vi vertices
are good. Pick an edge xy so that both x and y are good in Vi. Consider
N(x) ∩ N(y) ∩ Vj and N(x) ∩ N(y) ∩ Vs. Both sets have size at least
(d− ε)2|Vi|. Thus we can select an edge zw so that z ∈ N(x) ∩N(y) ∩ Vj
and w ∈ N(x) ∩N(y) ∩ Vs. Once again, we found a K4. Contradiction.

Let l = |Vi| ≈ n
k . Since R is triangle-free, R has at most k2/4 edges. The

total number of edge in G can be bounded by

||Gn|| ≤ ||R||(
1

2
+ 2ε)l2 +

((
k

2

)
− ||R||

)
3εl2 + εk2l2 + εkl2

≤ (
1

8
+ 20ε)n2.

Now let ε→ 0, we have ||Gn|| < ( 1
8 + o(1))n2.
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