Math777: Graph Theory (II) Homework 2 Solutions

1. [page 195, #4] Determine the value of $ex(n, K_{1,r})$ for all $r, n \in \mathbb{N}$.

Solution: We would like to determine how many edges a graph G on n vertices can have before a $K_{1,r}$ subgraph is forced. Note that G has a $K_{1,r}$ subgraph if and only if $\Delta(G) \geq r$. Thus, we must determine the maximum number of edges G can have and still maintain $\Delta(G) < r$. We consider two cases:

Case 1: $n \leq r$. Clearly, if $n \leq r$, we must have $\Delta(G) < r$. In this case, a complete graph on n vertices has no $K_{1,r}$ subgraph and $ex(n, K_{1,r}) = \binom{n}{2}$. Case 2: n > r. In this case, we try to draw edges on the vertices of G so that d(v) = r - 1 for all $v \in V(G)$. While it may not be possible to draw an r - 1-regular graph on n vertices, we are able to draw $\lfloor \frac{(r-1)\cdot n}{2} \rfloor$ edges. Thus $ex(n, K_{1,r}) = \lfloor \frac{(r-1)\cdot n}{2} \rfloor$.

[page 195, #5] Given k > 0, determine the extremal graphs without a matching of size k.

Solution: Let $n \in \mathbb{N}$ and k > 0. We will consider two cases:

Suppose n < 2k. The complete graph K_{2n} will certainly have no matching of size k. This graph K_{2n} has $\binom{n}{2}$ edges, and we certainly cannot better. Thus K_{2n} is the extremal graph in this case.

Suppose $n \ge 2k$. We construct the extremal graph in the following way: First, construct a K_{k-1} . Then, draw an edge from each of the remaining (n-k+1) vertices to each of the edges in the K_{k-1} . Then every edge in a maximal matching will be incident to a vertex in the K_{k-1} . Thus, the size of the maximal matching on this graph is k-1. This graph has $\binom{k-1}{2} + (n-k+1)(k-1)$ edges, and it is the extremal graph.

[page 195, #9] Show that deleting at most (m − s)(n − t)/s edges from a K_{m,n} will never destroy all its K_{s,t} subgraphs.

Solution: Let $M \cup N$ be the partition of the graph G obtained from $K_{m,n}$ by deleting these vertices. On the average, a vertex in M is losing (m-s)(n-t)/(sm) edges. Picking a set S of s vertices with most degrees from M. Consider the induced subgraph $G[S \cup N]$. We have

$$|E(G[S \cup N])| \ge s(n - (m - s)(n - t)/(sm)) = (s - 1)n + t - \frac{s}{m}(n - t) > (s - 1)n + t -$$

Thus in $G[S \cup N]$, there are a set T of t vertices from N with degree equal s. The induced subgraph $G[S \cup T]$ is a complete bipartite graph $K_{s,t}$.

4. [page 195, #11] Let $1 \le r \le n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where |A| = |B| = n, and assume that $K_{r,r} \not\subset G$. Show that

$$\sum_{x \in A} \binom{d(x)}{r} \le (r-1)\binom{n}{r}.$$

Use it to deduce $ex(n, K_{r,r}) \leq cn^{2-1/r}$.

Solution: Let $1 \leq r \leq n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where |A| = |B| = n. Assume $K_{r,r} \not\subset G$. Let d(x)denote the degree of vertex $x \in A$, and let N(x) denote the neighborhood of x. Note that N(x) contains $\binom{d(x)}{r}$ r-tuples of vertices. If we take the sum of all such r-tuples over the neighborhoods of all $x \in A$, we get $\sum_{x \in A} {\binom{d(x)}{r}}$. Note that any *r*-tuple can be counted at most r-1 times. Otherwise, we would get a $K_{r,r}$ subgraph. Thus,

$$\sum_{x \in A} \binom{d(x)}{r} \le (r-1)\binom{n}{r}.$$

Due to the convexity of $\binom{d(x)}{r}$ (for d(x) > r-1), $\sum_{x \in A} \binom{d(x)}{r}$ is minimized if the degrees of $x \in A$ are as even as possible. Thus,

$$\sum_{x \in A} \binom{d(x)}{r} \ge n \cdot \binom{|E(G)|/n}{r} \ge n \cdot \frac{(|E(G)|/n-r)^r}{r!}$$

Also,

$$(r-1)\binom{n}{r} \le (r-1)\frac{n^r}{r!}$$

Therefore,

$$n \cdot \frac{(|E(G)|/n-r)^r}{r!} \le (r-1)\frac{n^r}{r!}$$

If we solve this for |E(G)|, we conclude that $ex(n, K_{r,r}) \leq cn^{2-1/r}$.

5. [page 196, #11] Given a graph G with $\epsilon(G) \geq k \in \mathbb{N}$, find a minor $H \prec G$ such that $\delta(H) \ge k \ge |H|/2$.

Solution: Let k = 1. Let G be a graph with $\epsilon(G) \ge 1 = k$. That means G has at least one edge. If we let H be a path P_1 , H is certainly a minor of G, and $\delta(H) = k = |H|/2 = 1$.

We proceed by induction. Let $n \in \mathbb{N}$. Suppose for all $k \leq n-1$, for every graph G with $\epsilon(G) \geq k$, we can find a minor $H \prec G$ such that $\delta(H) \geq k \geq |H|/2$. Let G be a graph with $\epsilon(G) \geq n$. Pick the minimal minor $H \prec G$ such that $\delta(H) \geq k$, and let $x \in H$. Let us create a new graph H' from H by removing x. Since $\delta(H) \geq k$, x is not isolated, and the neighbors of x will have degree at least k-1 when x is removed. Since $\epsilon(H') \geq k-1$, by the inductive hypothesis, we can find a minor H'' of H'that satisfies $\delta(H'') \geq k - 1 \geq |H''|/2$. When we add x back in, we still get $\delta(H) \geq k$. Since we are adding only one vertex, |H''| goes up by at most $\frac{1}{2}$, so $k \geq |H|/2$.

6. If a graph G_n contains no K_4 and only contains o(n) independent vertices, then $||G_n|| < (\frac{1}{8} + o(1))n^2$. (Hint: apply Szemerédi's Regularity Lemma.)

Solution: For any $\epsilon > 0$, we apply Szemer*é*di's Regularity Lemma to G to get a regularity partition $V = V_0 \cup V_1 \cup \cdots \cup V_k$. We define an auxiliary graph R with the vertex set $\{V_1, \ldots, V_k\}$. A pair (V_i, V_j) forms an edge of R if it is a regular pair with edge density at least 3ϵ . We claim:

Claim a: No regularity pair has density $d > \frac{1}{2} + 2\epsilon$.

Claim b: R is triangle-free.

Proof of Claim a: If a regular pair (V_i, V_j) has density $d > \frac{1}{2} + 2\epsilon$. We claim that we can find a K_4 in G. Call a vertex $v \in V_i$ is good if for any $B \subset V_j$ with $|B| > \epsilon |V_j|$, v has at least $(d - \epsilon)$ neighbors in B. All vertices in V_i but a ϵ -fraction are good. Since the independent number of G is o(n), there is an edge xy in V_i so that both x and y are good. This implies $|N(x) \cap N(y) \cap V_j| > (d - \epsilon)^2 |V_j|$. Thus inside $N(x) \cap N(y) \cap V_j$ contains an edge st. The induced graph on $\{x, y, s, t\}$ is a K_4 . Contradiction.

Proof of Claim b: Suppose that R contains a triangle $V_i V_j V_s$. We can define a vertex $v \in V_i$ is good in a similarly way. At least $(1-2\epsilon)V_i$ vertices are good. Pick an edge xy so that both x and y are good in V_i . Consider $N(x) \cap N(y) \cap V_j$ and $N(x) \cap N(y) \cap V_s$. Both sets have size at least $(d-\epsilon)^2 |V_i|$. Thus we can select an edge zw so that $z \in N(x) \cap N(y) \cap V_j$ and $w \in N(x) \cap N(y) \cap V_s$. Once again, we found a K_4 . Contradiction.

Let $l = |V_i| \approx \frac{n}{k}$. Since R is triangle-free, R has at most $k^2/4$ edges. The total number of edge in G can be bounded by

$$||G_n|| \le ||R|| (\frac{1}{2} + 2\epsilon)l^2 + \left(\binom{k}{2} - ||R||\right) 3\epsilon l^2 + \epsilon k^2 l^2 + \epsilon k l^2$$
$$\le (\frac{1}{8} + 20\epsilon)n^2.$$

Now let $\epsilon \to 0$, we have $||G_n|| < (\frac{1}{8} + o(1))n^2$.