Math777: Graph Theory (II)
Homework 2 Solutions

1. [page 195, #4 | Determine the value of ex(n, K3 ,) for all ,n € N.

Solution: We would like to determine how many edges a graph G on n
vertices can have before a K, subgraph is forced. Note that G has a
K, , subgraph if and only if A(G) > r. Thus, we must determine the
maximum number of edges G can have and still maintain A(G) < r. We
consider two cases:

Case 1: n < r. Clearly, if n < r, we must have A(G) < r. In this case, a
complete graph on n vertices has no K1, subgraph and ex(n, K1) = (g‘)

Case 2: n > r. In this case, we try to draw edges on the vertices of G so

that d(v) = r — 1 for all v € V(G). While it may not be possible to draw
(r—1)n

5 | edges.

an r — l-regular graph on n vertices, we are able to draw |

Thus ex(n, K1 ,) = LWJ

2. [page 195, #5 | Given k > 0, determine the extremal graphs without a
matching of size k.

Solution: Let n € N and £ > 0. We will consider two cases:

Suppose n < 2k. The complete graph Ks,, will certainly have no matching
of size k. This graph Ko, has (g) edges, and we certainly cannot better.
Thus Ko, is the extremal graph in this case.

Suppose n > 2k. We construct the extremal graph in the following way:
First, construct a Ki_1. Then, draw an edge from each of the remaining
(n — k + 1) vertices to each of the edges in the Kj;_;. Then every edge
in a maximal matching will be incident to a vertex in the Kj_1. Thus,
the size of the maximal matching on this graph is k¥ — 1. This graph has

(’“;1) + (n—k+1)(k —1) edges, and it is the extremal graph.

3. [page 195, #9 | Show that deleting at most (m — s)(n —t)/s edges from a
K, n will never destroy all its K ; subgraphs.

Solution: Let M U N be the partition of the graph G obtained from
K., n by deleting these vertices. On the average, a vertex in M is losing
(m—s)(n—t)/(sm) edges. Picking a set S of s vertices with most degrees
from M. Consider the induced subgraph G[S U N]. We have

|E(G[SUN])| > s(n—(m—s)(n—t)/(sm)) = (5—1)n—|—t—%(n—t) > (s—1)n+t.

Thus in G[SUN], there are a set T of ¢ vertices from N with degree equal
s. The induced subgraph G[S U T] is a complete bipartite graph K ;.



4. [page 195, #11 | Let 1 < r < n be integers. Let G be a bipartite graph
with bipartition {4, B}, where |A| = |B| = n, and assume that K, , ¢ G.

Show that
E()=e-n()

Use it to deduce ex(n, K,.,.) < cn®~1/7.

Solution: Let 1 < r < n be integers. Let G be a bipartite graph with
bipartition {4, B}, where |A| = |B| = n. Assume K, , ¢ G. Let d(z)
denote the degree of vertex « € A, and let N(x) denote the neighborhood
of . Note that N(z) contains (d(f)) r-tuples of vertices. If we take the
sum of all such r-tuples over the neighborhoods of all x € A, we get
D owca (d(f)). Note that any r-tuple can be counted at most » — 1 times.
Otherwise, we would get a K, , subgraph. Thus,

= () <0 ()

z€A

Due to the convexity of (“*)) (for d(z) > r—1), 3, . 4 (*“)) is minimized
if the degrees of x € A are as even as possible. Thus,

5 () 5 (IEO 5, (EGn =y

N r!
Also,
n n”
—1 <(r—1)—
e-0(?) <=0
Therefore,
o E@ln =)
il d

If we solve this for |E(G)|, we conclude that ex(n, K,.,.) < en?~1/".

5. [page 196, #11 ] Given a graph G with e(G) > k € N, find a minor H < G
such that 6(H) > k > |H|/2.

Solution: Let k = 1. Let G be a graph with €(G) > 1 = k. That means
G has at least one edge. If we let H be a path Py, H is certainly a minor
of G, and §(H) =k = |H|/2 =1.



We proceed by induction. Let n € N. Suppose for all £ < n — 1, for
every graph G with €(G) > k, we can find a minor H < G such that
0(H) > k > |H|/2. Let G be a graph with €(G) > n. Pick the minimal
minor H < G such that §(H) > k, and let « € H. Let us create a new
graph H' from H by removing x. Since §(H) > k, = is not isolated, and
the neighbors of x will have degree at least kK —1 when x is removed. Since
e(H') > k — 1, by the inductive hypothesis, we can find a minor H” of H’
that satisfies 6(H"”) > k — 1 > |H"”|/2. When we add x back in, we still
get §(H) > k. Since we are adding only one vertex, |H"”| goes up by at
most 3, so k > |H|/2.

6. If a graph G,, contains no K4 and only contains o(n) independent vertices,
then ||G,|| < (§ +o(1))n?. (Hint: apply Szemerédi’s Regularity Lemma.)

Solution: For any € > 0, we apply Szemerédi’s Regularity Lemma to G
to get a regularity partition V = VoU Vi U---UV,. We define an auxiliary
graph R with the vertex set {Vi,...,V;}. A pair (V;,V;) forms an edge of
R if it is a regular pair with edge density at least 3e. We claim:

Claim a: No regularity pair has density d > % + 2e.

Claim b: R is triangle-free.

Proof of Claim a: If a regular pair (V;,V;) has density d > % + 2e. We
claim that we can find a Ky in G. Call a vertex v € V; is good if for any
B C V; with |B| > €|V}, v has at least (d — ¢) neighbors in B. All vertices
in V; but a e-fraction are good. Since the independent number of G is
o(n), there is an edge xy in V; so that both = and y are good. This implies
IN(z) "N (y) N V;| > (d —€)?|V;|. Thus inside N(z) N N(y) NV; contains
an edge st. The induced graph on {z,y, s,t} is a K4. Contradiction.
Proof of Claim b: Suppose that R contains a triangle V;V;V,. We can
define a vertex v € V; is good in a similarly way. At least (1—2¢)V; vertices
are good. Pick an edge zy so that both x and y are good in V;. Consider
N(z) " N(y) NV; and N(x) N N(y) N Vs. Both sets have size at least
(d — €)?|V;|. Thus we can select an edge zw so that z € N(z) N N(y) NV,
and w € N(z) N N(y) N Vs. Once again, we found a K4. Contradiction.

Let I = |V;| & %. Since R is triangle-free, R has at most k?/4 edges. The
total number of edge in G can be bounded by

1 k
|Gl < ||R||(5 +26)1% + (<2) — |R|> 3el? + ek?1? + ekl?
< (é + 20€)n>.

Now let € — 0, we have ||Gy|| < (3 + o(1))n?.



