Math777: Graph Theory (II) Spring, 2018

Homework 2, due Thursday, Feb. 15, 2018

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly.

- 1. [page 195, #4] Determine the value of $ex(n, K_{1,r})$ for all $r, n \in \mathbb{N}$.
- **2.** [page 195, #5] Given k > 0, determine the extremal graphs without a matching of size k.
- **3.** [page 195, #9] Show that deleting at most (m-s)(n-t)/s edges from a $K_{m,n}$ will never destroy all its $K_{s,t}$ subgraphs.
- **4.** [page 196, #11] Let $1 \le r \le n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where |A| = |B| = n, and assume that $K_{r,r} \not\subset G$. Show that

$$\sum_{x\in A}\binom{d(x)}{r}\leq (r-1)\binom{n}{r}.$$

Use it to deduce $ex(n, K_{r,r}) \leq cn^{2-1/r}$.

- **5.** [page 197, #20] Given a graph G with $\epsilon(G) \geq k \in \mathbb{N}$, find a minor $H \prec G$ such that $\delta(H) \geq k \geq |H|/2$.
- **6** If a graph G_n contains no K_4 and only contains o(n) independent vertices, then $\|G_n\| < (\frac{1}{8} + o(1))n^2$. (Hint: apply Szemerédi's Regularity Lemma.)