Math776: Graph Theory (I)
Fall, 2017
Homework 5 solutions

Select any 5 problems to solve. The total score of this homework is 10 points.
You get a bonus point if you solve all 6 problems correctly.

1. [page 111, #4 ] show that every planar graph is a union of three forests.

Proof: Let G be a planar graph and U is a subset of vertices. We need
to verify that ||G[U]|| < 3(JU] — 1). This is trivial when |U| = 1 or 2.
For |U| > 3, observe G[U] is still planar. Thus G[U] has at most 3|U| — 6
edges, which is less than 3(|JU| — 1). By Nash-William’s theorem, G can
decomposed into the union of three forests.

2. [page 112, #20 ] Show that adding a new edge to a maximal planar graph
of order at least 6 always produces both a T'K5 and a T'K3 3 subgraph.

Solution: Let G be a maximal planar graph of order at least 6 and the
new edge is vive. Since every maximal planar graph of order at least 6
is 3-connected, there are 3 vertex-disjoint paths P;, P, and P5, connect-
ing v; and vo. We may assume that the lengths of P; are minimized so
that each P; only contains one neighbor, say u; of v;. Since G is maximal
planar graph, G[N (v1)] forms a cycle C, which is broken into three arc seg-
ments uy Cug, usCug, uzCuy. Observe that vivs, viur, vius, vius, u;Cus,
ugsCuz, usCuy, uy Py, usPs, uszPs are ten inner-vertex-disjoint paths con-
necting every pair of vertices in {vy, va, u1, ug,uz}. This is a TK5. To
get T K3 3, there is another vertex w other than these 5 vertices. WLOG,
say w falls in the region between P; and P,. There are another 3 vertex-
disjoint paths connecting w to w1, ug, and vo. This forms a T' K3 3 with one
part of branching vertices w1, us, and vy, and the other part of branching
vertices v, us, and w.

3. [page 112, #22 | A graph is called outplanar if it has a drawing in which
every vertex lies on the boundary of the outer face. Show that a graph is
outplanar if and only if it contains neither K4 nor K5 3 as a minor.

Solution: (=) Let G be an outplanar graph. Since every vertex lies on
the outer face we can add a new vertex v in the outer face and connect v
to every vertex of G without crossing edges. This makes a new graph, call
it G’. Note the G’ is still planar because there are no crossed edges. By
our theorems on planar graphs, G’ has no K5 or K33 as a minor. This
implies that G must not have Ky or K 3 as a minor because it is G’ minus
one vertex.

(<) Assume that G has no K4 or Ko 3 as minor. If we construct G’ the
same was as we did in the previous direction, G’ will have neither a K5
or a K33 as minor. This means that G’ must be planar. So we can map
G’ to the sphere. On the sphere you can manipulate G’ until the vertex



v we added is in the same face as co. Then project this modification of
G’ onto the plane. Now v will be in the outer face of G’. By removing v,
you will expose every vertex in G to the outer face, making G outplanar. [J

4. [page 140, #13 | Show that every critical k-chromatic graph is (k — 1)-
edge-connected.

Solution: Proof by contradiction: assume that a critical k-chromatic
graph is not (k — 1)-edge-connected. There is an edge set F' of size at
most (k — 2) separating G into two pieces U and V. Since G is critical
k-chromatic graph, both G[U] and G[V] is (k — 1)-colorable. We would
like to construct a (k — 1)-coloring of G by pair the (k— 1) coloring classes
of G[U] to those of G[V] so that between each pair there is no crossing
edge from F. Say the coloring classes of G[U] are C1,Cs,...,C} and the
coloring classes of G[V] are C1,C5, ..., (. Select a color class, say C so
that at least one edge of F' coming out of this class. Since |F| < k — 2,
C7 can reach at most k& — 2 other classes through the edges of F. We can
find a class, say C1, so that C; U C] is an independent set. We continue
this process on to find Cy and C%, and so on. The key observation is
that at i-th iteration, at least (i — 1) edges of F' come out of C; for some
j < i. Therefore the number of edges in F' out of {C;,...,Cir_1} is at
most |F| — (i —1) < k—14—1, but the number of avaiable classes are k — i.
Thus, we can find C] so that C; UC/ is an independent set. Thus, we can
pair them one by one to get a k — 1 independent set whose union is V(G).
Thus G is (k — 1)-colorable. Contradiction!

5. [page 140, #24 | For every k, find a 2-chromatic graph whose choice num-
ber is at least k.

Solution: We claim that the complete bipartite graph K, ;x has choice
number at least k.

Consider the following coloring assignment. Divide a total of k2 colors
into k color classes Cq, Co, ..., Ck evenly. Assign each vertex v; on the left
with a color set C;. Assign each possible k-tuple in Cy x Cy x - -+ X C, to
one of vertex on the right side. If this graph is k-choosable, then there is a
selection of colors (c1, ca, ..., ¢k) for the k vertices on the left. Since there
is a vertex v on the right assigned with the exact colors {c1,¢a,...,cx}.
There is no way to select a proper color for v.

6. [page 140, #13 | Prove that the choice number of K3 is r. (Here K} is
the complete r-partite graph with each part of size 2.)

Solution: We will prove by induction that ch(K5) < r. For r =1, K3 is
the graph of two vertices and no edges which has choice number 1 since
no two vertices are adjacent. This satisfies the condition.

Assume r > 2. Consider K% with r parts Vi, Vs, ..., V., each of size 2.
There are two cases:



Case 1: There is an V; = {u;,v;} such that the lists of colors at u; and
v; has a common color ¢. Now delete the two vertices in V; from G, and
delete color ¢ from the lists of all vertices but u; and v;. The remaining
graph forms a KJ ~1 and each vertex has a list of colors with size at least
r — 1. By inductive hypothesis, K3 ' is (r — 1)-choosable. We find select
a color from each list to form a proper coloring of K3 ~1 Now extend this
coloring to G by assigning both u; and v; the color c.

Case 2: For each 1 < i < r, the color lists of colors of two vertices in V;
has NO common color. Now consider the first part V; = {uj,v1}. Now
pick any color ¢; in the list of u;. The color ¢; can be in at most » — 1
lists of other vertices. Since there are r colors available for the vertex vy,
there is a color ¢y in the v1’s list such that ¢y is not in the list of any other
vertex, whose list contains color ¢;. Now color vertex u; by ¢; and vertex
v1 by ¢o. Delete ¢y and ¢y from the lists of the rest of vertices. Since no
c1 and co are in the same list, there are at least » — 1 remaining colors
in each list of K} -1 By inductive hypothesis, we can select one color of
each list to form a proper coloring of G — V7, thus, a proper coloring of G.

This shows that K7 is r-choosable. To show that K7 is not (r — 1)-
choosable, note the each vertex in K3 has r — 1 neighbors. Therefore, if
every vertex has the same 7 —1 choices of colors, there would be no proper
coloring of Kj. Therefore, K3 is r-choosable, but not (r — 1)-choosable.
Therefore, K3 has choice number 7.



