Math776: Graph Theory (I)
 Fall, 2017
 Homework 5 solutions

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly.

1. [page 111, \#4] show that every planar graph is a union of three forests.

Proof: Let G be a planar graph and U is a subset of vertices. We need to verify that $\| G[U]| | \leq 3(|U|-1)$. This is trivial when $|U|=1$ or 2 . For $|U| \geq 3$, observe $G[U]$ is still planar. Thus $G[U]$ has at most $3|U|-6$ edges, which is less than $3(|U|-1)$. By Nash-William's theorem, G can decomposed into the union of three forests.
2. [page 112, \#20] Show that adding a new edge to a maximal planar graph of order at least 6 always produces both a $T K_{5}$ and a $T K_{3,3}$ subgraph.
Solution: Let G be a maximal planar graph of order at least 6 and the new edge is $v_{1} v_{2}$. Since every maximal planar graph of order at least 6 is 3 -connected, there are 3 vertex-disjoint paths P_{1}, P_{2}, and P_{3}, connect$\operatorname{ing} v_{1}$ and v_{2}. We may assume that the lengths of P_{i} are minimized so that each P_{i} only contains one neighbor, say u_{i} of v_{1}. Since G is maximal planar graph, $G\left[N\left(v_{1}\right)\right]$ forms a cycle C, which is broken into three arc segments $u_{1} C u_{2}, u_{2} C u_{3}, u_{3} C u_{1}$. Observe that $v_{1} v_{2}, v_{1} u_{1}, v_{1} u_{2}, v_{1} u_{3}, u_{1} C u_{2}$, $u_{2} C u_{3}, u_{3} C u_{1}, u_{1} P_{1}, u_{2} P_{2}, u_{3} P_{3}$ are ten inner-vertex-disjoint paths connecting every pair of vertices in $\left\{v_{1}, v_{2}, u_{1}, u_{2}, u_{3}\right\}$. This is a $T K_{5}$. To get $T K_{3,3}$, there is another vertex w other than these 5 vertices. WLOG, say w falls in the region between P_{1} and P_{2}. There are another 3 vertexdisjoint paths connecting w to u_{1}, u_{2}, and v_{2}. This forms a $T K_{3,3}$ with one part of branching vertices u_{1}, u_{2}, and v_{2}, and the other part of branching vertices v_{1}, u_{3}, and w.
3. [page 112, \#22] A graph is called outplanar if it has a drawing in which every vertex lies on the boundary of the outer face. Show that a graph is outplanar if and only if it contains neither K_{4} nor $K_{2,3}$ as a minor.
Solution: (\Rightarrow) Let G be an outplanar graph. Since every vertex lies on the outer face we can add a new vertex v in the outer face and connect v to every vertex of G without crossing edges. This makes a new graph, call it G^{\prime}. Note the G^{\prime} is still planar because there are no crossed edges. By our theorems on planar graphs, G^{\prime} has no K_{5} or $K_{3,3}$ as a minor. This implies that G must not have K_{4} or $K_{2,3}$ as a minor because it is G^{\prime} minus one vertex.
(\Leftarrow) Assume that G has no K_{4} or $K_{2,3}$ as minor. If we construct G^{\prime} the same was as we did in the previous direction, G^{\prime} will have neither a K_{5} or a $K_{3,3}$ as minor. This means that G^{\prime} must be planar. So we can map G^{\prime} to the sphere. On the sphere you can manipulate G^{\prime} until the vertex
v we added is in the same face as ∞. Then project this modification of G^{\prime} onto the plane. Now v will be in the outer face of G^{\prime}. By removing v, you will expose every vertex in G to the outer face, making G outplanar.
4. [page 140, \#13] Show that every critical k-chromatic graph is $(k-1)$ -edge-connected.

Solution: Proof by contradiction: assume that a critical k-chromatic graph is not $(k-1)$-edge-connected. There is an edge set F of size at most ($k-2$) separating G into two pieces U and V. Since G is critical k-chromatic graph, both $G[U]$ and $G[V]$ is $(k-1)$-colorable. We would like to construct a $(k-1)$-coloring of G by pair the $(k-1)$ coloring classes of $G[U]$ to those of $G[V]$ so that between each pair there is no crossing edge from F. Say the coloring classes of $G[U]$ are $C_{1}, C_{2}, \ldots, C_{k}$ and the coloring classes of $G[V]$ are $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$. Select a color class, say C_{1} so that at least one edge of F coming out of this class. Since $|F| \leq k-2$, C_{1} can reach at most $k-2$ other classes through the edges of F. We can find a class, say C_{1}^{\prime}, so that $C_{1} \cup C_{1}^{\prime}$ is an independent set. We continue this process on to find C_{2} and C_{2}^{\prime}, and so on. The key observation is that at i-th iteration, at least $(i-1)$ edges of F come out of C_{j} for some $j<i$. Therefore the number of edges in F out of $\left\{C_{i}, \ldots, C_{k-1}\right\}$ is at most $|F|-(i-1) \leq k-i-1$, but the number of avaiable classes are $k-i$. Thus, we can find C_{i}^{\prime} so that $C_{i} \cup C_{i}^{\prime}$ is an independent set. Thus, we can pair them one by one to get a $k-1$ independent set whose union is $V(G)$. Thus G is $(k-1)$-colorable. Contradiction!
5. [page 140, \#24] For every k, find a 2-chromatic graph whose choice number is at least k.

Solution: We claim that the complete bipartite graph $K_{k, k^{k}}$ has choice number at least k.
Consider the following coloring assignment. Divide a total of k^{2} colors into k color classes $C_{1}, C_{2}, \ldots, C_{k}$ evenly. Assign each vertex v_{i} on the left with a color set C_{i}. Assign each possible k-tuple in $C_{1} \times C_{2} \times \cdots \times C_{k}$ to one of vertex on the right side. If this graph is k-choosable, then there is a selection of colors $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ for the k vertices on the left. Since there is a vertex v on the right assigned with the exact colors $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$. There is no way to select a proper color for v.
6. [page 140, \#13] Prove that the choice number of K_{2}^{r} is r. (Here K_{2}^{r} is the complete r-partite graph with each part of size 2.)
Solution: We will prove by induction that $\operatorname{ch}\left(K_{2}^{r}\right) \leq r$. For $r=1, K_{2}^{1}$ is the graph of two vertices and no edges which has choice number 1 since no two vertices are adjacent. This satisfies the condition.
Assume $r \geq 2$. Consider K_{2}^{r} with r parts $V_{1}, V_{2}, \ldots, V_{r}$, each of size 2. There are two cases:

Case 1: There is an $V_{i}=\left\{u_{i}, v_{i}\right\}$ such that the lists of colors at u_{i} and v_{i} has a common color c. Now delete the two vertices in V_{i} from G, and delete color c from the lists of all vertices but u_{i} and v_{i}. The remaining graph forms a K_{2}^{r-1}, and each vertex has a list of colors with size at least $r-1$. By inductive hypothesis, K_{2}^{r-1} is $(r-1)$-choosable. We find select a color from each list to form a proper coloring of K_{2}^{r-1}. Now extend this coloring to G by assigning both u_{i} and v_{i} the color c.
Case 2: For each $1 \leq i \leq r$, the color lists of colors of two vertices in V_{i} has NO common color. Now consider the first part $V_{1}=\left\{u_{1}, v_{1}\right\}$. Now pick any color c_{1} in the list of u_{1}. The color c_{1} can be in at most $r-1$ lists of other vertices. Since there are r colors available for the vertex v_{1}, there is a color c_{2} in the v_{1} 's list such that c_{2} is not in the list of any other vertex, whose list contains color c_{1}. Now color vertex u_{1} by c_{1} and vertex v_{1} by c_{2}. Delete c_{1} and c_{2} from the lists of the rest of vertices. Since no c_{1} and c_{2} are in the same list, there are at least $r-1$ remaining colors in each list of K_{2}^{r-1}. By inductive hypothesis, we can select one color of each list to form a proper coloring of $G-V_{1}$, thus, a proper coloring of G.
This shows that K_{2}^{r} is r-choosable. To show that K_{2}^{r} is not $(r-1)$ choosable, note the each vertex in K_{2}^{r} has $r-1$ neighbors. Therefore, if every vertex has the same $r-1$ choices of colors, there would be no proper coloring of K_{2}^{r}. Therefore, K_{2}^{r} is r-choosable, but not $(r-1)$-choosable. Therefore, K_{2}^{r} has choice number r.

