
Math776: Graph Theory (I)
Fall, 2017

Homework 5 solutions

Select any 5 problems to solve. The total score of this homework is 10 points.
You get a bonus point if you solve all 6 problems correctly.

1. [page 111, #4 ] show that every planar graph is a union of three forests.

Proof: Let G be a planar graph and U is a subset of vertices. We need
to verify that ||G[U ]|| ≤ 3(|U | − 1). This is trivial when |U | = 1 or 2.
For |U | ≥ 3, observe G[U ] is still planar. Thus G[U ] has at most 3|U | − 6
edges, which is less than 3(|U | − 1). By Nash-William’s theorem, G can
decomposed into the union of three forests.

2. [page 112, #20 ] Show that adding a new edge to a maximal planar graph
of order at least 6 always produces both a TK5 and a TK3,3 subgraph.

Solution: Let G be a maximal planar graph of order at least 6 and the
new edge is v1v2. Since every maximal planar graph of order at least 6
is 3-connected, there are 3 vertex-disjoint paths P1, P2, and P3, connect-
ing v1 and v2. We may assume that the lengths of Pi are minimized so
that each Pi only contains one neighbor, say ui of v1. Since G is maximal
planar graph, G[N(v1)] forms a cycle C, which is broken into three arc seg-
ments u1Cu2, u2Cu3, u3Cu1. Observe that v1v2, v1u1, v1u2, v1u3, u1Cu2,
u2Cu3, u3Cu1, u1P1, u2P2, u3P3 are ten inner-vertex-disjoint paths con-
necting every pair of vertices in {v1, v2, u1, u2, u3}. This is a TK5. To
get TK3,3, there is another vertex w other than these 5 vertices. WLOG,
say w falls in the region between P1 and P2. There are another 3 vertex-
disjoint paths connecting w to u1, u2, and v2. This forms a TK3,3 with one
part of branching vertices u1, u2, and v2, and the other part of branching
vertices v1, u3, and w.

3. [page 112, #22 ] A graph is called outplanar if it has a drawing in which
every vertex lies on the boundary of the outer face. Show that a graph is
outplanar if and only if it contains neither K4 nor K2,3 as a minor.

Solution: (⇒) Let G be an outplanar graph. Since every vertex lies on
the outer face we can add a new vertex v in the outer face and connect v
to every vertex of G without crossing edges. This makes a new graph, call
it G′. Note the G′ is still planar because there are no crossed edges. By
our theorems on planar graphs, G′ has no K5 or K3,3 as a minor. This
implies that G must not have K4 or K2,3 as a minor because it is G′ minus
one vertex.

(⇐) Assume that G has no K4 or K2,3 as minor. If we construct G′ the
same was as we did in the previous direction, G′ will have neither a K5

or a K3,3 as minor. This means that G′ must be planar. So we can map
G′ to the sphere. On the sphere you can manipulate G′ until the vertex
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v we added is in the same face as ∞. Then project this modification of
G′ onto the plane. Now v will be in the outer face of G′. By removing v,
you will expose every vertex in G to the outer face, making G outplanar. �

4. [page 140, #13 ] Show that every critical k-chromatic graph is (k − 1)-
edge-connected.

Solution: Proof by contradiction: assume that a critical k-chromatic
graph is not (k − 1)-edge-connected. There is an edge set F of size at
most (k − 2) separating G into two pieces U and V . Since G is critical
k-chromatic graph, both G[U ] and G[V ] is (k − 1)-colorable. We would
like to construct a (k−1)-coloring of G by pair the (k−1) coloring classes
of G[U ] to those of G[V ] so that between each pair there is no crossing
edge from F . Say the coloring classes of G[U ] are C1, C2, . . . , Ck and the
coloring classes of G[V ] are C ′1, C

′
2, . . . , C

′
k. Select a color class, say C1 so

that at least one edge of F coming out of this class. Since |F | ≤ k − 2,
C1 can reach at most k − 2 other classes through the edges of F . We can
find a class, say C ′1, so that C1 ∪ C ′1 is an independent set. We continue
this process on to find C2 and C ′2, and so on. The key observation is
that at i-th iteration, at least (i− 1) edges of F come out of Cj for some
j < i. Therefore the number of edges in F out of {Ci, . . . , Ck−1} is at
most |F |− (i−1) ≤ k− i−1, but the number of avaiable classes are k− i.
Thus, we can find C ′i so that Ci ∪C ′i is an independent set. Thus, we can
pair them one by one to get a k− 1 independent set whose union is V (G).
Thus G is (k − 1)-colorable. Contradiction!

5. [page 140, #24 ] For every k, find a 2-chromatic graph whose choice num-
ber is at least k.

Solution: We claim that the complete bipartite graph Kk,kk has choice
number at least k.

Consider the following coloring assignment. Divide a total of k2 colors
into k color classes C1, C2, . . . , Ck evenly. Assign each vertex vi on the left
with a color set Ci. Assign each possible k-tuple in C1 ×C2 × · · · ×Ck to
one of vertex on the right side. If this graph is k-choosable, then there is a
selection of colors (c1, c2, . . . , ck) for the k vertices on the left. Since there
is a vertex v on the right assigned with the exact colors {c1, c2, . . . , ck}.
There is no way to select a proper color for v.

6. [page 140, #13 ] Prove that the choice number of Kr
2 is r. (Here Kr

2 is
the complete r-partite graph with each part of size 2.)

Solution: We will prove by induction that ch(Kr
2) ≤ r. For r = 1, K1

2 is
the graph of two vertices and no edges which has choice number 1 since
no two vertices are adjacent. This satisfies the condition.

Assume r ≥ 2. Consider Kr
2 with r parts V1, V2, . . . , Vr, each of size 2.

There are two cases:
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Case 1: There is an Vi = {ui, vi} such that the lists of colors at ui and
vi has a common color c. Now delete the two vertices in Vi from G, and
delete color c from the lists of all vertices but ui and vi. The remaining
graph forms a Kr−1

2 , and each vertex has a list of colors with size at least
r − 1. By inductive hypothesis, Kr−1

2 is (r − 1)-choosable. We find select
a color from each list to form a proper coloring of Kr−1

2 . Now extend this
coloring to G by assigning both ui and vi the color c.

Case 2: For each 1 ≤ i ≤ r, the color lists of colors of two vertices in Vi

has NO common color. Now consider the first part V1 = {u1, v1}. Now
pick any color c1 in the list of u1. The color c1 can be in at most r − 1
lists of other vertices. Since there are r colors available for the vertex v1,
there is a color c2 in the v1’s list such that c2 is not in the list of any other
vertex, whose list contains color c1. Now color vertex u1 by c1 and vertex
v1 by c2. Delete c1 and c2 from the lists of the rest of vertices. Since no
c1 and c2 are in the same list, there are at least r − 1 remaining colors
in each list of Kr−1

2 . By inductive hypothesis, we can select one color of
each list to form a proper coloring of G−V1, thus, a proper coloring of G.

This shows that Kr
2 is r-choosable. To show that Kr

2 is not (r − 1)-
choosable, note the each vertex in Kr

2 has r − 1 neighbors. Therefore, if
every vertex has the same r−1 choices of colors, there would be no proper
coloring of Kr

2 . Therefore, Kr
2 is r-choosable, but not (r − 1)-choosable.

Therefore, Kr
2 has choice number r.
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