Math776: Graph Theory (I)
 Fall, 2017
 Homework 5, due Monday, Dec. 4

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly.

1. [page 111, \#4] show that every planar graph is a union of three forests.
2. [page 112, \#20] Show that adding a new edge to a maximal planar graph of order at least 6 always produces both a $T K_{5}$ and a $T K_{3,3}$ subgraph.
3. [page 112, \#22] A graph is called outplanar if it has a drawing in which every vertex lies on the boundary of the outer face. Show that a graph is outerplanar if and only if it contains neither K_{4} nor $K_{2,3}$ as a minor.
4. [page 140, \#13] Show that every critical k-chromatic graph is $(k-1)$ -edge-connected.
5. [page 140, \#24] For every k, find a 2-chromatic graph whose choice number is at least k.
6. [page $140, \# 13$] Prove that the choice number of K_{2}^{r} is r. (Here K_{2}^{r} is the complete r-partite graph with each part of size 2 .)
