
Math776: Graph Theory (I)
Fall, 2017

Homework 4 solutions

Select any 5 problems to solve. The total score of this homework is 10 points.
You get a bonus point if you solve all 6 problems correctly.

1. [page 83, #4 ] Let X and X ′ be minimal separators in G such that X
meets at least two components of G − X ′. Show that X ′ meets at least
two components of G−X, and X meets all the components of G−X ′.
Solution: Suppose that X ′ meets G − X in only one component. Call
this component C.

Then X ′ ⊆ X ∪ C. So the components of G −X ′ are components which
come from C −X ′ and a component which contains the rest of G. So, X
meets only one component of G − X ′. This a contradiction. Hence, X ′

meets at least two components of G−X.

Then, it follows from symmetry that X meets every component of G−X ′.

2. [page 83, #10 ] Let e be an edge in a 3-connected graph G 6= K4. Show
that either G ·− e or G/e is again 3-connected.

Solution: Let e = xy be an edge in a 3-connected graph G 6= K4. We
want to show that either G ·− e or G/e is 3-connected. Suppose not, so
neither of these graphs are 3-connected. Then each of these new graphs
has a set of at most two vertices that disconnects it. First we look at
G/e. If neither of the vertices are the compressed ends of e then these
vertices would disconnect G, a contradiction. Let the other vertex in the
separator be called z. Since {xy, z} is a separator of G/e, {x, y, z} will
be a separator of G. And this set is a minimal separator in G so each of
these connects to every component of G− {x, y, z}.

Now we look at G ·− e. Neither x nor y can be in the separator or they
would be part of a 2-separator of G, so let {u, v} be a separator of G ·− e.
Now we consider where u and v live in G − {x, y, z}. If they are in the
same component, then there is at least one component containing neither
u nor v. Since x and y have edges to this connected component there must
be a xy path that does not use e or go through u or v. Thus x and y are in
the same component in G−{u, v}. This would mean that {u, v} separates
G, a contradiction, since removing e doesn’t affect anything. Hence u and
v are in different components of G−{x, y, z} and there are only these two
components.

Let a, b, c be the ends of the edges to x, y, z respectively, in the component
containing u. Since G is 3-connected there is an ab path that does not go
through x or u. If such a path doesn’t go through v then we can travel
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from x to a to this path to b then to y. This would mean that x and y are
in the same component of G − {u, v}. This is a contradiction as argued
above. Thus every such path goes through v. So there is some path from
a to v that doesn’t go through x, b, or u. This path must go through either
y or z first to get to the other side. Going through y would place x and y
in the same component of G − {u, v}, again a contradiction. Thus there
is a path from a to z that doesn’t go through x, v, or u. So a and z are
in the same component of G − {u, v}, and thus x is as well since it is a
neighbor of a.

Now we know that y and z are in different components of G−{u, v} since
x is in the same one as z. Since G is 3-connected there is a bc path that
does not go through y or u. Every such path must go through v or else
y and z would be in the same component of G − {u, v}. Thus there is a
path from b to v that does not go through y, c or u. So this path must go
through x or z first. But if it goes through x then x and y would be in
the same component of G−{u, v}. And if it goes through z then y and z
would be in the same component, also a contradiction. Therefore G must
not be 3-connected and we have shown that there must be a contradiction
so either G ·− e or G/e is 3-connected.

3. [page 84, #18 ] Let k ≥ 2. Show that every k-connected graph of order at
least 2k contains a cycle of length at least 2k.

Solution:

Let k ≥ 2 and let G be a k-connected graph with |G| ≥ 2k. As G is k-
connected, it is connected, and as δ(G) ≥ κ(G) ≥ k ≥ 2, it has no leaves,
so it is not a tree, so it has a cycle.

Let C be a largest cycle in G. First, as δ(G) ≥ κ(G) ≥ k and G has a cycle,
|C| ≥ k + 1. Assume for the sake of contradiction that |C| < 2k. Then
there is a v ∈ G\C. Let A = N(v) and B = V (C). as δ(G) ≥ κ(G) ≥
k, |A| ≥ k. Furthermore, any set X of size less than k cannot separate A
and B as that would disconnect v and some c ∈ C, contradiction that G
is k-connected. Thus the size of a minimum separator is at least k, and
by Menger’s theorem, there are at least k disjoint AB paths.

By the pigeon-hole principle (with vertices in A as pigeons and edges in C
as holes), there are a, a′ ∈ A and c1, c2 ∈ C such that c1, c2 ∈ E(G) there
are distinct a − c1 and a′ − c2 paths Pa and Pa′ . (Note that these paths
may be of length on if a vertex of C is adjacent to v.) Let P be the c1c2
path in C of size at least two, Then

C ′ = vPa

o

P Pa′v

has size at least one larger than C, contradicting the maximality of C.

We conclude |C| ≥ 2k.
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4. [page 84, #19 ] Let k ≥ 2. Show that in a k-connected graph any k
vertices lie on a common cycle.

Solution: Let G be a k-connected graph, and let v1, . . . , vk ∈ V (G). Let
C be a cycle containing as many of these specified vertices as possible,
without loss of generality say v1, . . . , vl, and suppose that l < k. Then
there exists a vl+1 outside of C, and by Menger’s Theorem, the minimum
number of vertices not equal to vl+1 separating vl+1 from C is equal to
the maximum number of independent N(vl+1)-C paths. Hence, since G
is k-connected, there are at least k paths from vl+1 to C, independent
save for vl+1 as the initial vertex. However, these paths must meet C
in between each of the vertices v1, . . . , vl with no two paths meeting in
the same portion of the cycle viCvi+1, or else there exists a larger cycle
containing vl+1. On the other hand, if no such cycle exists, then there are
at least k elements from v1, . . . , vk in C (since there are k paths meeting
C in this way), a contradiction.

5. [page 84, #24 ] Derive Tutte’s 1-factor theorem from Mader’s theorem.

Solution: Let G = (V,E) be a graph. For each vertex v ∈ V (G), add
a new vertex v′, and connect v to v′. Call this new graph G′, and let
H = {v′}. We have the following diagram:

Assume qG(S) ≤ |S| for all S ⊆ V (G). We want to show that G contains
a 1-factor.
Notice, there are |G|2 many independent H-paths by construction. So, we

have MG′(H) ≤ |G|
2 . Observe, if MG′(H) = |G|

2 = |G′|
4 , then G has a

1-factor. So, we need to show

|G|
2
≤MG′(H) = |S|+

∑
Ci∈CF

b1
2
|δC|c

for all S ⊆ V (G−H) and F ⊆ E(G− S)−E(H), where CF is the set of
connected components of F .
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Suppose we have r components of G−H. We then have |G| = |S|+ |C1|+
. . .+ |Cr|. So,

|S|+ b1
2
C1c+ . . .+ b1

2
Crc = |S|+ 1

2
|C1|+ . . .+

1

2
|Cr| −

1

2
qG(S)

=
|G|
2

+
|S|
2
− 1

2
qG(S)︸ ︷︷ ︸

≥ 0

since qG(S) ≤ |S|

≥ |G|
2

Therefore, MG′(H) = |G|
2 , hence, we G has a 1-factor.

6. [page 84, #26 ] For every k ∈ N find an l = l(k), as large as possible, such
that not every l-connected graph is k-linked.

Solution: We want to find a function l(k) as large as possible such that an
l(k) connected graph does not have to be k-linked. We will let l(k) = 3k−3
and show that a graph can be 3k-3 connected but not k-linked. Pick
s1, s2, ..., sk and t1, t2, ..., tk. Then add k − 1 vertices to finish the vertex
set of G. We will not have edges between si and ti for any i. However,
every other possible edge will be included in the edge set of G. Thus to
get from any vertex to any other vertex we can go through any of the
other 3k-3 vertices. Thus G is 3k-3 connected since there are this many
independent paths between any two vertices. But G is not k-linked since
any link must include one of the vertices from the k-1 set. Thus there
cannot be a complete set of k links so l(k) = 3k − 3 works.
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