Math776: Graph Theory (I)
 Fall, 2017
 Homework 4 solutions

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly.

1. [page 83, \#4] Let X and X^{\prime} be minimal separators in G such that X meets at least two components of $G-X^{\prime}$. Show that X^{\prime} meets at least two components of $G-X$, and X meets all the components of $G-X^{\prime}$.
Solution: Suppose that X^{\prime} meets $G-X$ in only one component. Call this component C.
Then $X^{\prime} \subseteq X \cup C$. So the components of $G-X^{\prime}$ are components which come from $C-X^{\prime}$ and a component which contains the rest of G. So, X meets only one component of $G-X^{\prime}$. This a contradiction. Hence, X^{\prime} meets at least two components of $G-X$.
Then, it follows from symmetry that X meets every component of $G-X^{\prime}$.
2. [page 83, \#10] Let e be an edge in a 3-connected graph $G \neq K_{4}$. Show that either $G \dot{-}$ or G / e is again 3 -connected.
Solution: Let $e=x y$ be an edge in a 3 -connected graph $G \neq K_{4}$. We want to show that either $G \doteq e$ or G / e is 3 -connected. Suppose not, so neither of these graphs are 3-connected. Then each of these new graphs has a set of at most two vertices that disconnects it. First we look at G / e. If neither of the vertices are the compressed ends of e then these vertices would disconnect G, a contradiction. Let the other vertex in the separator be called z. Since $\{x y, z\}$ is a separator of $G / e,\{x, y, z\}$ will be a separator of G. And this set is a minimal separator in G so each of these connects to every component of $G-\{x, y, z\}$.

Now we look at $G \dot{-}$. Neither x nor y can be in the separator or they would be part of a 2 -separator of G, so let $\{u, v\}$ be a separator of $G \dot{-}$. Now we consider where u and v live in $G-\{x, y, z\}$. If they are in the same component, then there is at least one component containing neither u nor v. Since x and y have edges to this connected component there must be a $x y$ path that does not use e or go through u or v. Thus x and y are in the same component in $G-\{u, v\}$. This would mean that $\{u, v\}$ separates G, a contradiction, since removing e doesn't affect anything. Hence u and v are in different components of $G-\{x, y, z\}$ and there are only these two components.

Let a, b, c be the ends of the edges to x, y, z respectively, in the component containing u. Since G is 3 -connected there is an $a b$ path that does not go through x or u. If such a path doesn't go through v then we can travel
from x to a to this path to b then to y. This would mean that x and y are in the same component of $G-\{u, v\}$. This is a contradiction as argued above. Thus every such path goes through v. So there is some path from a to v that doesn't go through x, b, or u. This path must go through either y or z first to get to the other side. Going through y would place x and y in the same component of $G-\{u, v\}$, again a contradiction. Thus there is a path from a to z that doesn't go through x, v, or u. So a and z are in the same component of $G-\{u, v\}$, and thus x is as well since it is a neighbor of a.

Now we know that y and z are in different components of $G-\{u, v\}$ since x is in the same one as z. Since G is 3 -connected there is a $b c$ path that does not go through y or u. Every such path must go through v or else y and z would be in the same component of $G-\{u, v\}$. Thus there is a path from b to v that does not go through y, c or u. So this path must go through x or z first. But if it goes through x then x and y would be in the same component of $G-\{u, v\}$. And if it goes through z then y and z would be in the same component, also a contradiction. Therefore G must not be 3-connected and we have shown that there must be a contradiction so either $G \doteq e$ or G / e is 3 -connected.
3. [page $\mathbf{8 4}, \# \mathbf{1 8}$] Let $k \geq 2$. Show that every k-connected graph of order at least $2 k$ contains a cycle of length at least $2 k$.

Solution:

Let $k \geq 2$ and let G be a k-connected graph with $|G| \geq 2 k$. As G is k connected, it is connected, and as $\delta(G) \geq \kappa(G) \geq k \geq 2$, it has no leaves, so it is not a tree, so it has a cycle.

Let C be a largest cycle in G. First, as $\delta(G) \geq \kappa(G) \geq k$ and G has a cycle, $|C| \geq k+1$. Assume for the sake of contradiction that $|C|<2 k$. Then there is a $v \in G \backslash C$. Let $A=N(v)$ and $B=V(C)$. as $\delta(G) \geq \kappa(G) \geq$ $k,|A| \geq k$. Furthermore, any set X of size less than k cannot separate A and B as that would disconnect v and some $c \in C$, contradiction that G is k-connected. Thus the size of a minimum separator is at least k, and by Menger's theorem, there are at least k disjoint $A B$ paths.

By the pigeon-hole principle (with vertices in A as pigeons and edges in C as holes), there are $a, a^{\prime} \in A$ and $c_{1}, c_{2} \in C$ such that $c_{1}, c_{2} \in E(G)$ there are distinct $a-c_{1}$ and $a^{\prime}-c_{2}$ paths P_{a} and $P_{a^{\prime}}$. (Note that these paths may be of length on if a vertex of C is adjacent to v.) Let P be the $c_{1} c_{2}$ path in C of size at least two, Then

$$
C^{\prime}=v P_{a} \stackrel{o}{P} P_{a^{\prime}} v
$$

has size at least one larger than C, contradicting the maximality of C.
We conclude $|C| \geq 2 k$.
4. [page 84, \#19] Let $k \geq 2$. Show that in a k-connected graph any k vertices lie on a common cycle.
Solution: Let G be a k-connected graph, and let $v_{1}, \ldots, v_{k} \in V(G)$. Let C be a cycle containing as many of these specified vertices as possible, without loss of generality say v_{1}, \ldots, v_{l}, and suppose that $l<k$. Then there exists a v_{l+1} outside of C, and by Menger's Theorem, the minimum number of vertices not equal to v_{l+1} separating v_{l+1} from C is equal to the maximum number of independent $N\left(v_{l+1}\right)-C$ paths. Hence, since G is k-connected, there are at least k paths from v_{l+1} to C, independent save for v_{l+1} as the initial vertex. However, these paths must meet C in between each of the vertices v_{1}, \ldots, v_{l} with no two paths meeting in the same portion of the cycle $v_{i} C v_{i+1}$, or else there exists a larger cycle containing v_{l+1}. On the other hand, if no such cycle exists, then there are at least k elements from v_{1}, \ldots, v_{k} in C (since there are k paths meeting C in this way), a contradiction.
5. [page 84, \#24] Derive Tutte's 1-factor theorem from Mader's theorem.

Solution: Let $G=(V, E)$ be a graph. For each vertex $v \in V(G)$, add a new vertex v^{\prime}, and connect v to v^{\prime}. Call this new graph G^{\prime}, and let $H=\left\{v^{\prime}\right\}$. We have the following diagram:

Assume $q_{G}(S) \leq|S|$ for all $S \subseteq V(G)$. We want to show that G contains a 1 -factor.
Notice, there are $\frac{|G|}{2}$ many independent H-paths by construction. So, we have $M_{G^{\prime}}(H) \leq \frac{|G|}{2}$. Observe, if $M_{G^{\prime}}(H)=\frac{|G|}{2}=\frac{\left|G^{\prime}\right|}{4}$, then G has a 1-factor. So, we need to show

$$
\frac{|G|}{2} \leq M_{G^{\prime}}(H)=|S|+\sum_{C_{i} \in C_{F}}\left\lfloor\frac{1}{2}|\delta C|\right\rfloor
$$

for all $S \subseteq V(G-H)$ and $F \subseteq E(G-S)-E(H)$, where C_{F} is the set of connected components of F.

Suppose we have r components of $G-H$. We then have $|G|=|S|+\left|C_{1}\right|+$ $\ldots+\left|C_{r}\right|$. So,

$$
\begin{aligned}
|S|+\left\lfloor\frac{1}{2} C_{1}\right\rfloor+\ldots+\left\lfloor\frac{1}{2} C_{r}\right\rfloor & =|S|+\frac{1}{2}\left|C_{1}\right|+\ldots+\frac{1}{2}\left|C_{r}\right|-\frac{1}{2} q_{G}(S) \\
& =\frac{|G|}{2}+\underbrace{\frac{|S|}{2}-\frac{1}{2} q_{G}(S)}_{\geq 0} \\
& \geq \frac{|G|}{2}
\end{aligned}
$$

Therefore, $M_{G^{\prime}}(H)=\frac{|G|}{2}$, hence, we G has a 1-factor.
6. [page 84, \#26] For every $k \in \mathbb{N}$ find an $l=l(k)$, as large as possible, such that not every l-connected graph is k-linked.
Solution: We want to find a function $l(k)$ as large as possible such that an $l(k)$ connected graph does not have to be k-linked. We will let $l(k)=3 k-3$ and show that a graph can be $3 \mathrm{k}-3$ connected but not k-linked. Pick $s_{1}, s_{2}, \ldots, s_{k}$ and $t_{1}, t_{2}, \ldots, t_{k}$. Then add $k-1$ vertices to finish the vertex set of G. We will not have edges between s_{i} and t_{i} for any i. However, every other possible edge will be included in the edge set of G . Thus to get from any vertex to any other vertex we can go through any of the other $3 \mathrm{k}-3$ vertices. Thus G is $3 \mathrm{k}-3$ connected since there are this many independent paths between any two vertices. But G is not k -linked since any link must include one of the vertices from the $\mathrm{k}-1$ set. Thus there cannot be a complete set of k links so $l(k)=3 k-3$ works.

