Math776: Graph Theory (I)
 Fall, 2017
 Homework 4, due Wednesday, Nov. 8

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly.

1. [page 83, \#4] Let X and X^{\prime} be minimal separators in G such that X meets at least two components of $G-X^{\prime}$. Show that X^{\prime} meets at least two components of $G-X$, and X meets all the components of $G-X^{\prime}$.
2. [page 83, $\# \mathbf{1 0}$] Let e be an edge in a 3-connected graph $G \neq K_{4}$. Show that either $G \doteq e$ or G / e is again 3-connected.
3. [page $\mathbf{8 4}, \mathbf{\# 1 8}]$ Let $k \geq 2$. Show that every k-connected graph of order at least $2 k$ contains a cycle of length at least $2 k$.
4. [page $84, \# 19]$ Let $k \geq 2$. Show that in a k-connected graph any k vertices lie on a common cycle.
5. [page 84, \#24] Derive Tutte's 1-factor theorem from Mader's theorem.
6. [page $\mathbf{8 4}, \# \mathbf{2 6}]$ For every $k \in \mathbb{N}$ find an $l=l(k)$, as large as possible, such that not every l-connected graph is k-linked.
