Math776: Graph Theory (I)
Fall, 2017
Homework 3 solution

1. [page 31, #39 ] Prove Gallai’s theorem that the edge set of any graph G

can be written as a disjoint union E(G) = C U D with C' € C(G) and
D e C*(G).
Proof: Let G be an arbitrary graph. Suppose for |G| < n there is a
partition of G such that G[V4] and G[V5] both have even degree and D =
{ab € E(GQ)|a € V1,b € V5}. Consider G with |G| = n. If deg(v) is even
for all v € V(G), then we are done as G = D and C = (). So, let v € V(QG)
such that deg(v) is odd. Construct G’ = G\{v} by adding the edge ab
if ab ¢ E(G) and deleting the edge ab if ab € E(G) for a,b € N(v). We
note that constructing the edges of G’ in this way preserves the parity
of the vertices in N(v). By the induction hypothesis, there is a partition
of G’ such that G'[V1] and G'[V3] both have even degree. As deg(v) is
odd, there are an odd number of neighbors of v in one of V; or V4 and
an even number in the other. WLOG, suppose there are an odd number
of neighbors of v in V4. Then we add v to V5 and reconstruct the edges
between v and its neighbors and delete the edges that were added. Then
G[V1] and G[V5] both have even degree. Thus, E(G) = C U D.

2. [page 54, #11 | Let G be a bipartite graph with bipartition {A, B}. As-
sume that §(G) > 1, and that d(a) > d(b) for every edge ab with a € A.
Show that G contains a matching of A.

Solution: Assume G has a minimal set S such that S does not satisfy
the marriage condition. In other words |N(S)| < |S|. Remove one vertex
of S, call it S’. Since S was minimal we are now guaranteed a matching
in S’. Also the |[N(S")| = |N(S)] or else we would have had a matching in
S. The edges from S’ to N(S') =32, cor d(ai) = 32y e n(sr) d(b;). So for
each a;3b; such that d(a;) = d(b;). When we add our one vertex back into
S’, it will be connected to one of the vertices in N(S’). This will disrupt
the equality above and 3 a b; such that d(a;) < d(b;).

So there is no minimal set that violates the marriage condition. So all
subsets have the marriage condition. So we have a matching on A. O

3. [page 55, #5 ] Derive the marriage theorem from Konig’s theorem.

Solution: The Konig’s theorem says that in a bipartite graph G, maxz|M| =
min|K|. where M is a matching, and K is a vertex cover of edges. We
use this theorem to prove the Hall’ theorem which says that G contains a
matching of A if and only if [N(S)| > |S] for all S C A. We use contradic-
tion method, given a graph G, it satisfies the Hall condition, but has no
matching of A, then according to Konig’s theorem, the size if cover U is



less than size of A, i.e. [U| < |A]. Wesay U = A"+ B with A" C A and
B' C B. Then [A|+|B'| = [U| < |A]. Hence |B| < [A]— |A'| = |[A\ 4'|.
Since U is a cover of edges, there is no edge between A\ A and \AB,
so, IN(A\ A)| < |B'| < |A\ A'|, which contradicts to the hall condition
when set S = A\ A’

4. [page 55, #8 Find an infinite counterexample to the statement of the mar-
riage theorem.

Proof: Let G be a bipartite graph with partition classes A and B. Enu-
merate the vertices in each of these partition classes. Then, for a fixed
index 1, let a; be adjacent to b;_; where ¢ > 2, and let a; be adjacent to
every vertex in B (see picture below). Notice, when the size of A and B
are infinite, any subset of the vertices in A has at least as many neighbors
as the size of the subset. Therefore, |[N(S)| > |S| for all S C A. Notice,
this is not the case when the sizes of A and B are finite. However, for
i > 2, a; has only one edge incident, and thus, this edge must be used when
considering a matching for A. Therefore, choosing each of these edges, one
must then find an independent edge that is incident to a;, which is not
possible. Hence, no matching of A exists.

5. [page 55, #9 | Let A be a finite set with subsets Aj,...,A,, and let
di,...,d, € N. Show that there are disjoint subsets Dy C Ay, with
|Dy| = dj, for all k < n if and only if

|User Ail > Zdi
i€l
forall I C {1,...,n}.
Solution: We construct a bipartite graph. In the left hand partition L,

we place d; copies of a vertex labeled D; for ¢ = 1,...,n, and into the
right hand partition R we place each of the distinct elements of U} | A,.
For i = 1,...,n, make each copy of D; adjacent to each a € A;.



If there exist disjoint subsets Dy C Ay, with |Dy| = di for all k < n,

then this is equivalent to there being a matching in the bipartite graph we
constructed. Hence, by the Marriage Theorem, |U;crA;| = \N(Di‘id)\ >
Yoicr|Dil =2 i di forall I C{1,...,n}.

On the other hand, if |UjesA;| > >°,c;ds for all T C {1,...,n}, then we
have |N(Di|iel)\ = |UierAi| > > ;crdi = > ;e |Ds| forall I C {1,...,n}.
Furthermore, if we take an S C L without the full number of copies of
some D;, then |S| < >,/ |Di| < \N(Di‘ielﬂ = |N(S)|. Therefore, by
the Marriage Theorem, there exists a matching, and we have constructed
disjoint subsets Dy, C Ay, with |Dy| = dj, for all k£ < n.

2. [page 55, #14 ] Show that all stable matchings of a given graph cover the
same vertices. (In particular, they have the same size.)

Solution: Let M, M’ be two stable matchings of G. For a contradiction,
suppose J vg € M’ \ M. Then vy has a neighbor vy with vovy € M'.
Note that v; must be matched in M, otherwise we may add vov; to M
to get a larger stable matching, a contradiction. Since v; is matched in
M, then vy has a neighbor vs with vivo € M. We have that vovivs is a
path with edges alternately in M’ and M. Continue in this manner to
get a full path P = vgvy - - - v, (for some n € N) and consider v,,_1. We
have the preferences v,—o <,,_, vn in M, but v, <, _, vp_2 in M’ a
contradiction.

Thus, such a vy cannot exist, so M and M’ must cover the same vertices.



