# Math776: Graph Theory (I) 

Fall, 2017
Homework 3 solution

1. [page 31, \#39] Prove Gallai's theorem that the edge set of any graph $G$ can be written as a disjoint union $E(G)=C \cup D$ with $C \in \mathcal{C}(G)$ and $D \in \mathcal{C}^{*}(G)$.
Proof: Let $G$ be an arbitrary graph. Suppose for $|G|<n$ there is a partition of $G$ such that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ both have even degree and $D=$ $\left\{a b \in E(G) \mid a \in V_{1}, b \in V_{2}\right\}$. Consider $G$ with $|G|=n$. If $\operatorname{deg}(v)$ is even for all $v \in V(G)$, then we are done as $G=D$ and $C=\emptyset$. So, let $v \in V(G)$ such that $\operatorname{deg}(v)$ is odd. Construct $G^{\prime}=G \backslash\{v\}$ by adding the edge $a b$ if $a b \notin E(G)$ and deleting the edge $a b$ if $a b \in E(G)$ for $a, b \in N(v)$. We note that constructing the edges of $G^{\prime}$ in this way preserves the parity of the vertices in $N(v)$. By the induction hypothesis, there is a partition of $G^{\prime}$ such that $G^{\prime}\left[V_{1}\right]$ and $G^{\prime}\left[V_{2}\right]$ both have even degree. As $\operatorname{deg}(v)$ is odd, there are an odd number of neighbors of $v$ in one of $V_{1}$ or $V_{2}$ and an even number in the other. WLOG, suppose there are an odd number of neighbors of $v$ in $V_{1}$. Then we add $v$ to $V_{2}$ and reconstruct the edges between $v$ and its neighbors and delete the edges that were added. Then $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ both have even degree. Thus, $E(G)=C \cup D$.
2. [page 54, \#11] Let $G$ be a bipartite graph with bipartition $\{A, B\}$. Assume that $\delta(G) \geq 1$, and that $d(a) \geq d(b)$ for every edge $a b$ with $a \in A$. Show that $G$ contains a matching of $A$.
Solution: Assume $G$ has a minimal set $S$ such that $S$ does not satisfy the marriage condition. In other words $|N(S)|<|S|$. Remove one vertex of $S$, call it $S^{\prime}$. Since $S$ was minimal we are now guaranteed a matching in $S^{\prime}$. Also the $\left|N\left(S^{\prime}\right)\right|=|N(S)|$ or else we would have had a matching in $S$. The edges from $S^{\prime}$ to $N\left(S^{\prime}\right)=\sum_{a_{i} \in S^{\prime}} d\left(a_{i}\right)=\sum_{b_{j} \in N\left(S^{\prime}\right)} d\left(b_{j}\right)$. So for each $a_{i} \exists b_{j}$ such that $d\left(a_{i}\right)=d\left(b_{j}\right)$. When we add our one vertex back into $S^{\prime}$, it will be connected to one of the vertices in $N\left(S^{\prime}\right)$. This will disrupt the equality above and $\exists$ a $b_{j}$ such that $d\left(a_{i}\right)<d\left(b_{j}\right)$.
So there is no minimal set that violates the marriage condition. So all subsets have the marriage condition. So we have a matching on $A$.
3. [page 55, \#5] Derive the marriage theorem from König's theorem.

Solution: The König's theorem says that in a bipartite graph $G, \max |M|=$ $\min |K|$. where $M$ is a matching, and $K$ is a vertex cover of edges. We use this theorem to prove the Hall' theorem which says that $G$ contains a matching of A if and only if $|N(S)| \geq|S|$ for all $S \subseteq A$. We use contradiction method, given a graph $G$, it satisfies the Hall condition, but has no matching of $A$, then according to König's theorem, the size if cover $U$ is
less than size of $A$, i.e. $|U|<|A|$. We say $U=A^{\prime}+B^{\prime}$ with $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$. Then $\left|A^{\prime}\right|+\left|B^{\prime}\right|=|U|<|A|$. Hence $\left|B^{\prime}\right|<|A|-\left|A^{\prime}\right|=\left|A \backslash A^{\prime}\right|$. Since $U$ is a cover of edges, there is no edge between $A \backslash A^{\prime}$ and $\backslash A B$, so, $\left|N\left(A \backslash A^{\prime}\right)\right| \leq\left|B^{\prime}\right|<\left|A \backslash A^{\prime}\right|$, which contradicts to the hall condition when set $S=A \backslash A^{\prime}$.
4. [page 55, \#8 Find an infinite counterexample to the statement of the marriage theorem.
Proof: Let $G$ be a bipartite graph with partition classes $A$ and $B$. Enumerate the vertices in each of these partition classes. Then, for a fixed index $i$, let $a_{i}$ be adjacent to $b_{i-1}$ where $i \geq 2$, and let $a_{1}$ be adjacent to every vertex in $B$ (see picture below). Notice, when the size of $A$ and $B$ are infinite, any subset of the vertices in $A$ has at least as many neighbors as the size of the subset. Therefore, $|N(S)| \geq|S|$ for all $S \subseteq A$. Notice, this is not the case when the sizes of $A$ and $B$ are finite. However, for $i \geq 2, a_{i}$ has only one edge incident, and thus, this edge must be used when considering a matching for $A$. Therefore, choosing each of these edges, one must then find an independent edge that is incident to $a_{1}$, which is not possible. Hence, no matching of $A$ exists.

5. [page 55, \#9] Let $A$ be a finite set with subsets $A_{1}, \ldots, A_{n}$, and let $d_{1}, \ldots, d_{n} \in \mathbb{N}$. Show that there are disjoint subsets $D_{k} \subset A_{k}$, with $\left|D_{k}\right|=d_{k}$ for all $k \leq n$ if and only if

$$
\left|\cup_{i \in I} A_{i}\right| \geq \sum_{i \in I} d_{i}
$$

for all $I \subset\{1, \ldots, n\}$.
Solution: We construct a bipartite graph. In the left hand partition $L$, we place $d_{i}$ copies of a vertex labeled $D_{i}$ for $i=1, \ldots, n$, and into the right hand partition $R$ we place each of the distinct elements of $\cup_{i=1}^{n} A_{i}$. For $i=1, \ldots, n$, make each copy of $D_{i}$ adjacent to each $a \in A_{i}$.

If there exist disjoint subsets $D_{k} \subseteq A_{k}$, with $\left|D_{k}\right|=d_{k}$ for all $k \leq n$, then this is equivalent to there being a matching in the bipartite graph we constructed. Hence, by the Marriage Theorem, $\left|\cup_{i \in I} A_{i}\right|=\left|N\left(\left.D_{i}\right|_{i \in I}\right)\right| \geq$ $\sum_{i \in I}\left|D_{i}\right|=\sum_{i \in I} d_{i}$ for all $I \subseteq\{1, \ldots, n\}$.
On the other hand, if $\left|\cup_{i \in I} A_{i}\right| \geq \sum_{i \in I} d_{i}$ for all $I \subseteq\{1, \ldots, n\}$, then we have $\left|N\left(\left.D_{i}\right|_{i \in I}\right)\right|=\left|\cup_{i \in I} A_{i}\right| \geq \sum_{i \in I} d_{i}=\sum_{i \in I}\left|D_{i}\right|$ for all $I \subseteq\{1, \ldots, n\}$. Furthermore, if we take an $S \subset L$ without the full number of copies of some $D_{i}$, then $|S|<\sum_{i \in I}\left|D_{i}\right| \leq\left|N\left(\left.D_{i}\right|_{i \in I}\right)\right|=|N(S)|$. Therefore, by the Marriage Theorem, there exists a matching, and we have constructed disjoint subsets $D_{k} \subseteq A_{k}$, with $\left|D_{k}\right|=d_{k}$ for all $k \leq n$.
2. [page 55, \#14 ] Show that all stable matchings of a given graph cover the same vertices. (In particular, they have the same size.)
Solution: Let $M, M^{\prime}$ be two stable matchings of $G$. For a contradiction, suppose $\exists v_{0} \in M^{\prime} \backslash M$. Then $v_{0}$ has a neighbor $v_{1}$ with $v_{0} v_{1} \in M^{\prime}$. Note that $v_{1}$ must be matched in $M$, otherwise we may add $v_{0} v_{1}$ to $M$ to get a larger stable matching, a contradiction. Since $v_{1}$ is matched in $M$, then $v_{1}$ has a neighbor $v_{2}$ with $v_{1} v_{2} \in M$. We have that $v_{0} v_{1} v_{2}$ is a path with edges alternately in $M^{\prime}$ and $M$. Continue in this manner to get a full path $P=v_{0} v_{1} \cdots v_{n}$ (for some $n \in \mathbb{N}$ ) and consider $v_{n-1}$. We have the preferences $v_{n-2}<_{v_{n-1}} v_{n}$ in $M$, but $v_{n}<_{v_{n-1}} v_{n-2}$ in $M^{\prime}$, a contradiction.

Thus, such a $v_{0}$ cannot exist, so $M$ and $M^{\prime}$ must cover the same vertices.

