
Math776: Graph Theory (I)
Fall, 2017

Homework 3 solution

1. [page 31, #39 ] Prove Gallai’s theorem that the edge set of any graph G
can be written as a disjoint union E(G) = C ∪ D with C ∈ C(G) and
D ∈ C∗(G).

Proof: Let G be an arbitrary graph. Suppose for |G| < n there is a
partition of G such that G[V1] and G[V2] both have even degree and D =
{ab ∈ E(G)|a ∈ V1, b ∈ V2}. Consider G with |G| = n. If deg(v) is even
for all v ∈ V (G), then we are done as G = D and C = ∅. So, let v ∈ V (G)
such that deg(v) is odd. Construct G′ = G\{v} by adding the edge ab
if ab /∈ E(G) and deleting the edge ab if ab ∈ E(G) for a, b ∈ N(v). We
note that constructing the edges of G′ in this way preserves the parity
of the vertices in N(v). By the induction hypothesis, there is a partition
of G′ such that G′[V1] and G′[V2] both have even degree. As deg(v) is
odd, there are an odd number of neighbors of v in one of V1 or V2 and
an even number in the other. WLOG, suppose there are an odd number
of neighbors of v in V1. Then we add v to V2 and reconstruct the edges
between v and its neighbors and delete the edges that were added. Then
G[V1] and G[V2] both have even degree. Thus, E(G) = C ∪D.

2. [page 54, #11 ] Let G be a bipartite graph with bipartition {A,B}. As-
sume that δ(G) ≥ 1, and that d(a) ≥ d(b) for every edge ab with a ∈ A.
Show that G contains a matching of A.

Solution: Assume G has a minimal set S such that S does not satisfy
the marriage condition. In other words |N(S)| < |S|. Remove one vertex
of S, call it S′. Since S was minimal we are now guaranteed a matching
in S′. Also the |N(S′)| = |N(S)| or else we would have had a matching in
S. The edges from S′ to N(S′) =

∑
ai∈S′ d(ai) =

∑
bj∈N(S′) d(bj). So for

each ai∃bj such that d(ai) = d(bj). When we add our one vertex back into
S′, it will be connected to one of the vertices in N(S′). This will disrupt
the equality above and ∃ a bj such that d(ai) < d(bj).

So there is no minimal set that violates the marriage condition. So all
subsets have the marriage condition. So we have a matching on A. �

3. [page 55, #5 ] Derive the marriage theorem from König’s theorem.

Solution: The König’s theorem says that in a bipartite graphG, max|M | =
min|K|. where M is a matching, and K is a vertex cover of edges. We
use this theorem to prove the Hall’ theorem which says that G contains a
matching of A if and only if |N(S)| ≥ |S| for all S ⊆ A. We use contradic-
tion method, given a graph G, it satisfies the Hall condition, but has no
matching of A, then according to König’s theorem, the size if cover U is
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less than size of A, i.e. |U | < |A|. We say U = A
′
+ B

′
with A

′ ⊆ A and
B
′ ⊆ B. Then |A′ |+ |B′ | = |U | < |A|. Hence |B′ | < |A| − |A′ | = |A \A′ |.

Since U is a cover of edges, there is no edge between A \ A′ and \AB′ ,
so, |N(A \ A′)| ≤ |B′ | < |A \ A′ |, which contradicts to the hall condition
when set S = A \A′ .

4. [page 55, #8 Find an infinite counterexample to the statement of the mar-
riage theorem.

Proof: Let G be a bipartite graph with partition classes A and B. Enu-
merate the vertices in each of these partition classes. Then, for a fixed
index i, let ai be adjacent to bi−1 where i ≥ 2, and let a1 be adjacent to
every vertex in B (see picture below). Notice, when the size of A and B
are infinite, any subset of the vertices in A has at least as many neighbors
as the size of the subset. Therefore, |N(S)| ≥ |S| for all S ⊆ A. Notice,
this is not the case when the sizes of A and B are finite. However, for
i ≥ 2, ai has only one edge incident, and thus, this edge must be used when
considering a matching for A. Therefore, choosing each of these edges, one
must then find an independent edge that is incident to a1, which is not
possible. Hence, no matching of A exists.

5. [page 55, #9 ] Let A be a finite set with subsets A1, . . . , An, and let
d1, . . . , dn ∈ N. Show that there are disjoint subsets Dk ⊂ Ak, with
|Dk| = dk for all k ≤ n if and only if

|∪i∈IAi| ≥
∑
i∈I

di

for all I ⊂ {1, . . . , n}.
Solution: We construct a bipartite graph. In the left hand partition L,
we place di copies of a vertex labeled Di for i = 1, . . . , n, and into the
right hand partition R we place each of the distinct elements of ∪ni=1Ai.
For i = 1, . . . , n, make each copy of Di adjacent to each a ∈ Ai.
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If there exist disjoint subsets Dk ⊆ Ak, with |Dk| = dk for all k ≤ n,
then this is equivalent to there being a matching in the bipartite graph we
constructed. Hence, by the Marriage Theorem, |∪i∈IAi| = |N(Di

∣∣
i∈I)| ≥∑

i∈I |Di| =
∑

i∈I di for all I ⊆ {1, . . . , n}.
On the other hand, if |∪i∈IAi| ≥

∑
i∈I di for all I ⊆ {1, . . . , n}, then we

have |N(Di

∣∣
i∈I)| = |∪i∈IAi| ≥

∑
i∈I di =

∑
i∈I |Di| for all I ⊆ {1, . . . , n}.

Furthermore, if we take an S ⊂ L without the full number of copies of
some Di, then |S| <

∑
i∈I |Di| ≤ |N(Di

∣∣
i∈I)| = |N(S)|. Therefore, by

the Marriage Theorem, there exists a matching, and we have constructed
disjoint subsets Dk ⊆ Ak, with |Dk| = dk for all k ≤ n.

2. [page 55, #14 ] Show that all stable matchings of a given graph cover the
same vertices. (In particular, they have the same size.)

Solution: Let M,M ′ be two stable matchings of G. For a contradiction,
suppose ∃ v0 ∈ M ′ \ M . Then v0 has a neighbor v1 with v0v1 ∈ M ′.
Note that v1 must be matched in M , otherwise we may add v0v1 to M
to get a larger stable matching, a contradiction. Since v1 is matched in
M , then v1 has a neighbor v2 with v1v2 ∈ M . We have that v0v1v2 is a
path with edges alternately in M ′ and M . Continue in this manner to
get a full path P = v0v1 · · · vn (for some n ∈ N) and consider vn−1. We
have the preferences vn−2 <vn−1

vn in M , but vn <vn−1
vn−2 in M ′, a

contradiction.

Thus, such a v0 cannot exist, so M and M ′ must cover the same vertices.
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