Math776: Graph Theory (I)
 Fall, 2017
 Homework 1 solution

1. [page 30,\#2] Determine the average degree, number of edges, diameter, girth, and circumference of the hypercube graph Q_{d}.

Solution:

- It is a d-regular graph so the average degree is d.
- The number of edges is $2^{d-1} \times d$.
- The diameter is d.
- The girth is 4 for $d \geq 2$; and is ∞ for $d=1$.
- The circumference is 2^{d} since Q_{d} is Hamiltonian.

2. [page $\mathbf{3 0}, \# \mathbf{3}$] Let G be a graph containing a cycle C, and assume that G contains a path of length at least k between two vertices of C. Show that G contains a cycle of length at least \sqrt{k}.
Solution: Let $C=\left(V_{c}, E_{c}\right)$ denote the cycle in G, and let $P=\left(V_{p}, E_{p}\right)$ denote the path of length at least k in G. Let $\left|V_{p} \cap V_{c}\right|=s$. If $s \geq \sqrt{k}$, then C is is the cycle that we want. Thus, we can assume $2 \leq s<\sqrt{k}$.
The set $V_{p} \cap V_{c}$ divides P into s segment. There is a segment P_{i} with at least

$$
\frac{k}{s-1} \geq \frac{k}{\sqrt{k}-1}>\sqrt{k}
$$

edges.
Taking this segment P_{i} together with edges on C connecting two ends of P_{i} results with a cycle of length at least \sqrt{k}.
3. [page 30, \#8] Show that every connected graph G contains a path of length at least $\min \{2 \delta(G),|G|-1\}$.

Solution: Let $P=x_{0} x_{1} \ldots x_{m}$ be a path in graph G of maximal length. We will denote the length of P by l.

If $l \geq|G|-1$, we are done. Otherwise, the set $O=V(G) \backslash V(P)$ is nonempty, and since the graph is connected, there exists a $V(P)-O$ path, $P^{\prime}=y_{0} y_{1} \ldots y_{k}$ that is non-trivial.
Claim: If $l<2 \delta(G)$ then there is a cycle spanning $V(P)$.
Observe that $N\left(x_{0}\right) \subset P$ and $N\left(x_{m}\right) \subset P$, because if either endpoint of P is adjacent to a vertex outside of P, then the path can be extended and is not maximal. If $x_{0} x_{i+1}$ and $x_{m} x_{i}$ are both edges in P, then there is a cycle $C=x_{0} \ldots x_{i} x_{m} \ldots x_{i+1} x_{0}$.

The occurrence of these two edges can be shown by the Pigeonhole Principle.
A special case occurs where there is an edge $x_{0} x_{m}$, since the other edge is given in the path.

The vertex x_{0} has at least $\delta(G)-1$ neighbors out of $\left\{x_{2} \ldots x_{m-1}\right\}$ because it is adjacent to x_{1} and not adjacent to x_{m} (would create an obvious cycle). For each neighbor x_{i} there is a corresponding vertex x_{i-1} to which x_{m} is not adjacent. So, x_{m} must have at least $\delta(G)-1$ neighbors out of $\left\{x_{1} \ldots x_{m-2}\right\}$, and of those $\delta(G)-1$ are forbidden. Since $m<2 \delta(G)$, there are fewer than $2 \delta(G)-2$ possible neighbors. So by the Pigeonhole Principle one of the neighbors is forbidden, so there is a cycle.
By deleting an edge of the cycle spanning $V(P)$ incident with y_{0} you can extend the remaining path with P^{\prime}, forming a path longer than P, which is a contradiction.

Figure 1: Visualization of proof
4. [page 30, \#9] Show that a connected graph of diameter k and minimum degree d has at least about $k d / 3$ vertices but need not have substantially more.

Solution: Let x_{0} and x_{k} be vertices such that the shortest path, P , between the two has length k, the diameter. Let v be a vertex not on P that is adjacent to a vertex on P . Let i be the smallest integer such that x_{i} is adjacent to v. If $j>i+2$ then x_{j} cannot be adjacent to v or $x_{0} P x_{i} v x_{j} P x_{k}$ would be a path from x_{0} to x_{k} of length less than k, a contradiction. Thus any vertex off of P can only be adjacent to at most 3 vertices on P. Now we consider the number of edges leaving P. Two ends of P contribute $(d-1)$ each. Every internal vertex of P contributes $(d-2)$ edges. Thus there are

$$
2(d-1)+(k-1)(d-2)=k d-2 k
$$

edges leaving P.
Since any vertex off of P can only be adjacent to at most 3 vertices on P, The number of neighbors of P is at least

$$
\frac{k d-2 k}{3}
$$

Thus the total number of vertices is at least

$$
\frac{k d-2 k}{3}+k+1=\frac{k(d+1)}{3}+1>\frac{k d}{3} .
$$

On the other hand, we can reverse-engineer the proof to construct a graph G from a path P by adding vertices to connect each three consecutive vertices of P properly. This graph will not substantially more than $\frac{k d}{3}$ vertices.
5. [page 30, \#12] Determine $\kappa(G)$ and $\lambda(G)$ for $G=P_{m}, C_{n}, K_{n}, K_{m, n}$, and $Q_{d} ; d, m, n \geq$ 3.

Proof:
$\kappa\left(P_{m}\right)=\lambda\left(P_{m}\right)=1$.
$\kappa\left(C_{n}\right)=\lambda\left(C_{n}\right)=2$.
$\kappa\left(K_{n}\right)=\lambda\left(K_{n}\right)=n-1$.
$\kappa\left(K_{m, n}\right)=\lambda\left(K_{m, n}\right)=\min \{m, n\}$.
$\kappa\left(Q_{d}\right)=\lambda\left(Q_{d}\right)=d$.
6. [page 31, \#18] Show that a tree without a vertex of degree 2 has more leaves than other vertices. Can you find a very short proof that does not use induction?
Proof: Let G be a tree with no vertex of degree 2. Let L be the set of leaves in G and let O be the set of vertices which are not leaves in G. Note that the minimum degree of an element of O is 3 because no vertex has degree 2 . So,

$$
2(|V|-1)=\sum_{v \in V} d(v) \geq|L|+3|O|
$$

Since $|V|=|L|+|O|$, we get

$$
|L| \geq|O|+2
$$

