
Math776: Graph Theory (I)
Fall, 2017

Homework 1 solution

1. [page 30, #2 ] Determine the average degree, number of edges, diameter, girth, and cir-
cumference of the hypercube graph Qd.

Solution:

• It is a d-regular graph so the average degree is d.

• The number of edges is 2d−1 × d.

• The diameter is d.

• The girth is 4 for d ≥ 2; and is ∞ for d = 1.

• The circumference is 2d since Qd is Hamiltonian.

2. [page 30, #3 ] Let G be a graph containing a cycle C, and assume that G contains a path
of length at least k between two vertices of C. Show that G contains a cycle of length at
least

√
k.

Solution: Let C = (Vc, Ec) denote the cycle in G, and let P = (Vp, Ep) denote the path

of length at least k in G. Let |Vp ∩ Vc| = s. If s ≥
√
k, then C is is the cycle that we

want. Thus, we can assume 2 ≤ s <
√
k.

The set Vp ∩ Vc divides P into s segment. There is a segment Pi with at least

k

s− 1
≥ k√

k − 1
>
√
k

edges.

Taking this segment Pi together with edges on C connecting two ends of Pi results with
a cycle of length at least

√
k.

3. [page 30, #8 ] Show that every connected graph G contains a path of length at least
min{2δ(G), |G| − 1}.
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Solution: Let P = x0x1 . . . xm be a path in graph G of maximal length.
We will denote the length of P by l.

If l ≥ |G| − 1, we are done. Otherwise, the set O = V (G) \ V (P ) is nonempty, and since
the graph is connected, there exists a V (P )−O path, P ′ = y0y1 . . . yk that is non-trivial.

Claim: If l < 2δ(G) then there is a cycle spanning V (P ).

Observe that N(x0) ⊂ P and N(xm) ⊂ P , because if either endpoint of P is adjacent to
a vertex outside of P , then the path can be extended and is not maximal. If x0xi+1 and
xmxi are both edges in P , then there is a cycle C = x0 . . . xixm . . . xi+1x0.

The occurrence of these two edges can be shown by the Pigeonhole Principle.

A special case occurs where there is an edge x0xm, since the other edge is given in
the path.

The vertex x0 has at least δ(G) − 1 neighbors out of {x2 . . . xm−1} because it is ad-
jacent to x1 and not adjacent to xm(would create an obvious cycle). For each neighbor
xi there is a corresponding vertex xi−1 to which xm is not adjacent. So, xm must have at
least δ(G)− 1 neighbors out of {x1 . . . xm−2}, and of those δ(G)− 1 are forbidden. Since
m < 2δ(G), there are fewer than 2δ(G) − 2 possible neighbors. So by the Pigeonhole
Principle one of the neighbors is forbidden, so there is a cycle.

By deleting an edge of the cycle spanning V (P ) incident with y0 you can extend the
remaining path with P ′, forming a path longer than P , which is a contradiction.
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Figure 1: Visualization of proof

4. [page 30, #9 ] Show that a connected graph of diameter k and minimum degree d has at
least about kd/3 vertices but need not have substantially more.
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Solution: Let x0 and xk be vertices such that the shortest path, P, between the two has
length k, the diameter. Let v be a vertex not on P that is adjacent to a vertex on P. Let
i be the smallest integer such that xi is adjacent to v. If j > i + 2 then xj cannot be
adjacent to v or x0PxivxjPxk would be a path from x0 to xk of length less than k, a
contradiction. Thus any vertex off of P can only be adjacent to at most 3 vertices on P .
Now we consider the number of edges leaving P . Two ends of P contribute (d− 1) each.
Every internal vertex of P contributes (d− 2) edges. Thus there are

2(d− 1) + (k − 1)(d− 2) = kd− 2k

edges leaving P .

Since any vertex off of P can only be adjacent to at most 3 vertices on P , The number
of neighbors of P is at least

kd− 2k

3
.

Thus the total number of vertices is at least

kd− 2k

3
+ k + 1 =

k(d+ 1)

3
+ 1 >

kd

3
.

On the other hand, we can reverse-engineer the proof to construct a graph G from a
path P by adding vertices to connect each three consecutive vertices of P properly. This
graph will not substantially more than kd

3 vertices.

5. [page 30, #12 ] Determine κ(G) and λ(G) for G = Pm, Cn,Kn,Km,n, and Qd; d,m, n ≥
3.

Proof:

κ(Pm) = λ(Pm) = 1.

κ(Cn) = λ(Cn) = 2.

κ(Kn) = λ(Kn) = n− 1.

κ(Km,n) = λ(Km,n) = min{m,n}.
κ(Qd) = λ(Qd) = d.

6. [page 31, #18 ] Show that a tree without a vertex of degree 2 has more leaves than other
vertices. Can you find a very short proof that does not use induction?

Proof: Let G be a tree with no vertex of degree 2. Let L be the set of leaves in G and
let O be the set of vertices which are not leaves in G. Note that the minimum degree of
an element of O is 3 because no vertex has degree 2. So,

2(|V | − 1) =
∑
v∈V

d(v) ≥ |L|+ 3|O|.

Since |V | = |L|+ |O|, we get
|L| ≥ |O|+ 2.
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