Math776: Graph Theory (I)
Fall, 2017
Homework 1 solution

1. [page 30, #2 | Determine the average degree, number of edges, diameter, girth, and cir-
cumference of the hypercube graph Q.

Solution:

e It is a d-regular graph so the average degree is d.
e The number of edges is 291 x d.
e The diameter is d.

The girth is 4 for d > 2; and is oo for d = 1.

e The circumference is 2% since Qg is Hamiltonian.

2. [page 30, #3 ] Let G be a graph containing a cycle C, and assume that G contains a path
of length at least k between two vertices of C. Show that G contains a cycle of length at

least k.

Solution: Let C' = (V,, E.) denote the cycle in G, and let P = (V,,, E},) denote the path
of length at least k in G. Let |V, N V.| =s. If s > Vk, then C is is the cycle that we
want. Thus, we can assume 2 < s < Vk.

The set V,, NV, divides P into s segment. There is a segment P; with at least
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edges.
Taking this segment P; together with edges on C' connecting two ends of P; results with
a cycle of length at least V/k.

3. [page 30, #8 ] Show that every connected graph G contains a path of length at least
min{26(G), |G| — 1}.



Solution: Let P = zgx;...x,, be a path in graph G of maximal length.
We will denote the length of P by I.

If I > |G| — 1, we are done. Otherwise, the set O = V(G) \ V(P) is nonempty, and since
the graph is connected, there exists a V/(P) — O path, P’ = yoy; . .. yx that is non-trivial.

Claim: If [ < 26(G) then there is a cycle spanning V(P).

Observe that N(zg) C P and N(x,,) C P, because if either endpoint of P is adjacent to
a vertex outside of P, then the path can be extended and is not maximal. If zox;41 and
Tmx; are both edges in P, then there is a cycle C = z¢ ... 22y, ... Ti4120.

The occurrence of these two edges can be shown by the Pigeonhole Principle.

A special case occurs where there is an edge xgz,,, since the other edge is given in
the path.

The vertex xo has at least §(G) — 1 neighbors out of {xs...2,,,—1} because it is ad-
jacent to x1 and not adjacent to z,,(would create an obvious cycle). For each neighbor
x; there is a corresponding vertex x;_1 to which x,, is not adjacent. So, z,, must have at
least 6(G) — 1 neighbors out of {x; ...2m,_2}, and of those §(G) — 1 are forbidden. Since
m < 26(G), there are fewer than 20(G) — 2 possible neighbors. So by the Pigeonhole
Principle one of the neighbors is forbidden, so there is a cycle.

By deleting an edge of the cycle spanning V(P) incident with yy you can extend the
remaining path with P’, forming a path longer than P, which is a contradiction.
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Figure 1: Visualization of proof

4. [page 30, #9 ] Show that a connected graph of diameter k¥ and minimum degree d has at
least about kd/3 vertices but need not have substantially more.



Solution: Let g and zj; be vertices such that the shortest path, P, between the two has
length k, the diameter. Let v be a vertex not on P that is adjacent to a vertex on P. Let
i be the smallest integer such that x; is adjacent to v. If j > i + 2 then x; cannot be
adjacent to v or xgPz;vx; Px), would be a path from xg to zj of length less than &, a
contradiction. Thus any vertex off of P can only be adjacent to at most 3 vertices on P.
Now we consider the number of edges leaving P. Two ends of P contribute (d — 1) each.
Every internal vertex of P contributes (d — 2) edges. Thus there are

2d— 1)+ (k—1)(d — 2) = kd — 2k

edges leaving P.

Since any vertex off of P can only be adjacent to at most 3 vertices on P, The number
of neighbors of P is at least

kd — 2k
5
Thus the total number of vertices is at least
kd — 2k k(d+1 kd
+hk+1= % +1> 5

On the other hand, we can reverse-engineer the proof to construct a graph G from a

path P by adding vertices to connect each three consecutive vertices of P properly. This

graph will not substantially more than % vertices.

5. [page 30, #12 | Determine x(G) and A\(G) for G = P,,,C,,, Ky, Ky, and Qg; d, m,n >
3.
Proof:
K(Pp) = AMPp) = 1.

6. [page 31, #18 | Show that a tree without a vertex of degree 2 has more leaves than other
vertices. Can you find a very short proof that does not use induction?

Proof: Let G be a tree with no vertex of degree 2. Let L be the set of leaves in G and
let O be the set of vertices which are not leaves in G. Note that the minimum degree of
an element of O is 3 because no vertex has degree 2. So,

2VI-1)=> d(v) > |L|+3[O].
veEV

Since |V| = |L| 4 |O], we get
|L| > |O] + 2.



