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1. Introduction

LetGbeanundirectedfinite simplegraphwithnverticesand theadjacencymatrixA(G). SinceA(G) is

a real symmetricmatrix, its eigenvalues are real numbers. Sowe can assume that λ0 � λ1 � · · · � λn−1

are the adjacency eigenvalues of G. The multiset of the eigenvalues of A(G) is called the adjacency

spectrum. Themaximum eigenvalue of A(G) is called the index of G. A graph G is called an integral graph

if its adjacency eigenvalues are integers.

Graphswith fewdistinct eigenvalues forman interestingclassofgraphs.Clearly if all theeigenvalues

of a graph coincide, then we have a trivial graph (a graph without edges). Connected graphs with

only two distinct eigenvalues are easily proven to be complete graphs. The first nontrivial graphs

with three distinct eigenvalues are the strongly regular graphs. Graphs with exactly three distinct
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eigenvalues are generalizations of strongly regular graphs by dropping regularity. A large family of

(in general) non-regular examples is given by the complete bipartite graphs Km,n with the spectrum

{[√mn]1, [0]m+n−2, [−√
mn]1}. Other exampleswere found by Bridges andMena [1] andMuzychuk and

Klin [9], most of them being cones. A cone over a graph H is obtained by adding a vertex to H that is

adjacent to all vertices of H. Those with the least eigenvalue −2 have been characterized by Van Dam

(see [6]). Further results on graphs with few different eigenvalues can be found in [4–9]. In this paper

we characterize graphs with three distinct eigenvalues and index less than 8. Moreover we show that

the number of connected graphs with fix number of distinct eigenvalues and with largest eigenvalue

not exceeding the given number are finite. The main result is the following theorem (the definitions

of the following graphs are given in the next section).

Theorem 1. If G is a connected graph with three distinct eigenvalues and index less than 8, then G is one

of the following graphs: the complete bipartite graph, the strongly regular graphs with parameters srg-

(5, 2, 0, 1), srg-(13, 6, 2, 3) and srg-(9, 6, 3, 6), the lattice graphs L2(3), L2(4), the triangular graphs T(4),

T(5), the cocktail party graph CP(4), the Shrikhande graph, the cone over the Petersen graph, the Petersen

graph, the Hoffman-Singleton graph and the Clebsch graph.

2. Some definitions and preliminaries

In this section we express some useful results. First we give some definitions that will be used in

the sequel. A t-(v, k, λ) design is a set of v points and a set of k-subsets of points, called blocks, such that

any t-subset of points is contained in precisely λ blocks. The point x and the block b are called incident

if x ∈ b. The incidence graph of a design is the bipartite graph with vertices the points and blocks of

the design, where a point and a block are adjacent if and only if they are incident. A projective plane of

order n is a 2-(n2 + n + 1,n + 1, 1) design. The Fano plane is the projective plane of order 2. The unique

strongly regular graphs with parameters srg-(50, 7, 0, 1) and srg-(27, 10, 1, 5) are called the Hoffman-

Singleton graph and the Schläfli graph, respectively. The Shrikhande graph is a strongly regular graph

with parameters srg-(16, 6, 2, 2). A cocktail party graph CP(n) is the complement of the disjoint union

of n edges. The Clebsch graph is the unique strongly regular graph with parameters srg-(16, 5, 0, 2). The

triangular graph T(n) is the line graph of the complete graph Kn. The lattice graph L2(n) is the line graph

of the complete bipartite graph Kn,n.

In this paper we assume that G be a simple connected graph with three distinct eigenvalues λ0 >

λ1 > λ2. Moreover let NG(C3) denote the number of triangles of G and suppose Ni
G
(C3) is the number

of triangles containing vi.

Lemma 1 [7]. Suppose A is a symmetric n × nmatrix with eigenvalues λ0 � λ1 � · · · � λn−1 and suppose

s is the sum of the entries of A. Then λ0 � s/n � λn−1 and equality on either side implies that every row

sum of A equals s/n.

An importantpropertyof connectedgraphswith threeeigenvalues is that (A − λ1I)(A − λ2I) is a rank

one matrix. It follows that for some Perron–Frobenius eigenvector α corresponding to the eigenvalue

λ0 of G, we have (A − λ1I)(A − λ2I) = ααt .

Lemma 2 [6]. Let α be the Perron–Frobenius eigenvector corresponding to the eigenvalue λ0 of G with three

distinct eigenvalues such that (A − λ1I)(A − λ2I) = ααt . Then

(i) di = −λ1λ2 + α2
i
is the degree of vertex vi,

(ii) λij = λ1 + λ2 + αiαj is the number of common neighbors of vi and vj , if they are adjacent,

(iii) μij = αiαj is the number of common neighbors of vi and vj , if they are not adjacent.

Corollary 1. Let G be an integral connected graph with three distinct eigenvalues. Then for each vi and

vj ∈ V(G), αiαj =
√

(di + λ1λ2)(dj + λ1λ2) is integer.
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By Lemma 2, we can see that if G is a regular graph, then G is a strongly regular graph. Let A be

the adjacency matrix of a graph on n vertices, m edges and let {[λ0]1, [λ1]m1 , [λ2]m2 } for λ0 > λ1 > λ2
be its adjacency spectrum (mi is the multiplicity of the eigenvalue λi for i = 1, 2). We know that tr(Ai)

gives the total number of closed walks of length i. On the other hand tr(Ai) equals to the sum of the ith

powers of the adjacency eigenvalues. So if NG(H) is the number of subgraphs of type H of G, then we

have

m1 + m2 = n − 1, (1)

λ1m1 + λ2m2 + λ0 = 0, (2)

λ21m1 + λ22m2 + λ20 = 2m, (3)

λ31m1 + λ32m2 + λ30 = 6NG(C3). (4)

Using (1)–(4) we obtain the following equalities:

m2 = λ1(n − 1) + λ0

λ1 − λ2
= 2m + λ0λ1 − λ2

0

λ2(λ2 − λ1)

= 6NG(C3) + λ2
1
λ0 − λ3

0

λ3
2

− λ2
1
λ2

= 6NG(C3) − 2mλ1 + λ2
0
λ1 − λ3

0

λ3
2

− λ2
2
λ1

. (5)

Chang showed that up to isomorphism there are four strongly regular graphs with parameters srg-

(28, 12, 6, 4), namely T(8) and three other graphs, known as the Chang graphs. Switching with respect

to some subset of the vertices means that we interchange the edges and the non-edges between

the subset and its complement. Muzychuk and Klin found parametric conditions for switching in a

strongly regular graph to obtain a non-regular graph with three eigenvalues. Moreover, they proved

that the only such graph that can be obtained by switching in a triangular graph is the one obtained by

switching in T(9)with respect to an 8-clique. This gives a graphwith spectrum {[21]1, [5]7, [−2]28}. We

have the following graph with spectrum {[11]1, [3]7, [−2]16]}, which is related to the strongly regular

lattice graph L2(5). For a vertex x in L2(5), the set of its neighbors can be partitioned into two 4-sets,

each inducing a 4-clique. Now delete x and (switch) interchange edges and non-edges between one of

the 4-sets and the set of non-neighbors of x (see [6]). In the next theorem all connected graphs with

three distinct eigenvalues, each at least −2, are characterized.

Theorem 2. Let G be a connected graph with three distinct eigenvalues.

(i) [6] If each eigenvalue of G is greater than −2, then G is either K1,2, K1,3, or C5,

(ii) [2] If G is a strongly regular graph with the least eigenvalue −2, then G is one of L(Kn), L(Kn,n),CP(n),

complement of the Schläfli graph, the Shrikhande graph, complement of the Clebsch graph, the Pet-

ersen graph and the three Chang graphs.

(iii) [6] If each eigenvalue of G is at least −2 and G is not a strongly regular graph or a complete bipartite

graph, then G is one of the following graphs: the cone over the Petersen graph, the graph derived

from the complement of the Fano plane, the cone over the Shrikhande graph, the cone over the lattice

graph L2(4), the graph on the points and planes of AG(3, 2), the graph related to the lattice graph

L2(5) (see above), the cones over the Chang graphs, the cone over the triangular graph T(8) and the

graph obtained by switching in T(9) with respect to an 8-clique.

Lemma 3 [6]. The only connected non-regular graphs with three distinct eigenvalues and at most twenty

vertices, which are not complete bipartite are the cone over the Petersen graph, the graph derived from

the complement of the Fano plane, the cone over the Shrikhande graph and the cone over the lattice graph

L2(4).

Now we will determine all connected integral graphs with three distinct eigenvalues each at least

−2 and index less than 8.
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Theorem 3. All connected integral graphs with three distinct eigenvalues, index less than 8 and the least

eigenvalue at least −2 are K1,4,K2,2, the cone over the Petersen, the Shrikhande graph, the Petersen graph,

the lattice graphs L2(3), L2(4), the triangular graphs T(4), T(5), the cocktail party graph CP(4).

Proof. Using Theorem 2, the result follows. �

3. Bound on the number of vertices

In this section we obtain an upper bound on the number of vertices of graphs with a given number

of distinct eigenvalues in terms of the largest eigenvalue. Therefore we conclude that the number of

connected graphs with fix number of distinct eigenvalues and with largest eigenvalue not exceeding

the given number is finite.

Lemma 4 [3]. Let G be a connected graph and suppose H is a proper subgraph of G. Then λ0(H) < λ0(G)

where λ0(G) is the largest eigenvalue of G.

It iswell-known that the number of distinct eigenvalues ofG is at least d + 1where d is the diameter

of G (see [3]). The following theorem gives an upper bound on the number of vertices in terms of the

largest eigenvalue.

Theorem 4. Let G be a connected graphwith r distinct eigenvalues on n vertices and the largest eigenvalue

λ0. Then n � 1 + λ2
0

(λ2
0
−1)r−1−1

λ2
0
−2

.

Proof. Let � be the maximum degree of G. Since d + 1 � r we have

n � 1 + � + �(� − 1) + �(� − 1)2 + · · ·�(� − 1)(r−2)

= 1 + �
(� − 1)r−1 − 1

� − 2
.

On the other hand K1,� is the subgraph of G and so by Lemma 4, we have
√

� � λ0. Therefore by the

above inequality we have

n � 1 + λ20

(λ2
0

− 1)r−1 − 1

λ2
0

− 2
. �

Since each complete graph has two distinct eigenvalues the diameter of each graph with three

distinct eigenvalues is 2 and so we have the following result.

Lemma 5. Let G be a connected graph with three distinct eigenvalues on n vertices and the largest eigen-

value λ0. Then n � 1 + �2 � 1 + λ4
0
.

4. Non-integral graphs

In this section we consider non-integral graphs with three distinct eigenvalues and index less than

8. Using the following facts, wewill show that each of these graphs is either a complete bipartite graph

or a strongly regular graph.

Lemma 6 [6]. Let G be a non-integral connected graph with three distinct eigenvalues on n vertices and

suppose G is not a complete bipartite graph. Then n is odd and λ0 = (n − 1)/2, (λ1, λ2) = (−1 + √
b/2,−1 −
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√
b/2), for some b ≡ 1(mod 4) and b � n,with equality if and only if G is a strongly regular graph.Moreover,

if n ≡ 1(mod 4), then all vertex degrees are even and if n ≡ 3(mod 4), then b ≡ 1(mod 8).

Lemma 7 [6]. If the largest eigenvalue of a connected graph G with three distinct eigenvalues is not an

integer, then G is a complete bipartite graph.

Theorem 5. Let G be a non-integral connected graph with three distinct eigenvalues and index less than

8. Then G is one of the following graphs: the complete bipartite graph, the strongly regular graphs with

parameters srg-(5, 2, 0, 1) and srg-(13, 6, 2, 3).

Proof. Suppose that G has distinct eigenvalues λ0 > λ1 > λ2. If G is a complete bipartite graph, then

G = Kp,q where pq < 64 is non-square. Now let G be not a complete bipartite graph. By Lemma 7, λ0 is

integer. By applying Lemma 6, we can see that n � 15 is an odd number. If G is a regular graph, then

G is a strongly regular graph with k = λ0 � 7 and so G is a non-integral strongly regular graph with

parameters srg-(v, k, λ,μ) where (v, k, λ,μ) ∈ {(5, 2, 0, 1), (13, 6, 2, 3)}. Finally from Lemma 3, we can see

that each non-regular non-integral connected graph G with n � 15 is complete bipartite. �

5. Integral graphs

In this section we will characterize all integral graphs with three distinct eigenvalues and index

less than 8. First we give some useful lemmas.

The minimal polynomial PA(λ) of the adjacency matrix A(G) of a graph G is the unique monic poly-

nomial of minimal degree such that PA(A) = 0. If {λ0, λ1, . . . , λr} is the set of distinct eigenvalues of a

graph G, then (see [3])

PA(λ) =
r∏

i=0

(λ − λi).

Lemma 8. Let G be an integral connected graph with three distinct eigenvalues and suppose λ1 � 0 and

λ0 � 7. ThenG is either the complete bipartite graphKp,q for square1 < pq � 49,CP(4), T(4)or the strongly

regular graph with parameters srg-(9, 6, 3, 6).

Proof. Since λ1 � 0,G is a completemultipartite graph (see [3]). On the other handG is not a complete

graph. So G has a color class with more than one vertex. Since the rows of the adjacency matrix of G

corresponding to the vertices of a given color class are equal, the rank of the adjacency matrix is

less than n and so λ1 = 0. It is clear that if G is a complete bipartite graph, then G is Kp,q for square

1 < pq � 49. Now assume that G is not a complete bipartite graph. By equality (2), it is clear that

λ2 | λ0. From Theorem 2, we can see that there is no integral graph with three distinct eigenvalues and

λ2 > −2. It is clear that for each prime λ0 � 7, we have λ2 = −λ0. Therefore G is complete bipartite. So

the possible spectra are S1 = {[4]1, [0]m1 , [−2]2}, S2 = {[6]1, [0]m1 , [−2]3} and S3 = {[6]1, [0]m1 , [−3]2}.
By Theorem 3, we know that the only graph with spectrum S1 is T(4) and the graph with spectrum S2
is CP(4). Now let the spectrum of G be S3. If G is regular, then by Theorem 2, G is the strongly regular

graph with parameters srg-(9, 6, 3, 6). So suppose that G is non-regular. The minimal polynomial of

A(G) is PA(λ) = λ3 − 3λ2 − 18λ. So for vi ∈ V(G) we have 2Ni
G
(C3) = 3di. On the other hand from the

equalities (3), (4), NG(C3) = m = 27. Therefore

(Ni
G(C3), di) ∈ {(3, 2), (6, 4), (9, 6), (12, 8), (15, 10), (18, 12), (21, 14), (24, 16), (27, 18)}.

But it is clear that (Ni
G
(C3), di) /= (3, 2). Since from Corollary 1, didj must be a square, so the only

possible degree sequences are {8, 18} and {4, 16}. Let xk = |{vi ∈ V(G)|di = k}|. First let possible degree

of each vertex be 8 or 18. Then we have 8x8 + 18x18 = 54. Since NG(C3) = 27 and each vertex of

degree 18 lies on 27 triangles, x18 = 1. Hence 8x8 = 36 which is not true. Now suppose each possible
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degree of each vertices is 4 or 16. Then we have 4x4 + 16x16 = 54. Since 4 �54 and the left side of the

equality is a multiple of 4, this case is impossible.

Lemma 9. Let G be a connected graphwith three distinct eigenvalues. Suppose G is not a complete bipartite

graph. Then

(i) If G is a non-regular graph, then NG(C3) > 0.

(ii) If G has a vertex vi with Ni
G
(C3) = 0, then the degree of vi is di = −λ0λ1λ2/(λ0 + λ1 + λ2).

Proof. (i) Since G has three distinct eigenvalues, the degree of the minimal polynomial of A(G) is 3

and we have A3 = (λ0 + λ1 + λ2)A
2 − (λ0λ1 + λ0λ2 + λ1λ2)A + (λ0λ1λ2)I. So we have 2Ni

G
(C3) = (λ0 +

λ1 + λ2)di + (λ0λ1λ2). If (λ0 + λ1 + λ2) = 0, then λ1 � 0 and soG is completemultipartite. On the other

hand G is not complete bipartite and so NG(C3) > 0. Now let (λ0 + λ1 + λ2) /= 0. Since G is non-regular

it is clear that there is at least one vertex of G with Ni
G
(C3) > 0. Consequently we have NG(C3) > 0,

(ii) If (λ0 + λ1 + λ2) = 0, then λ1 � 0 and so G is complete multipartite. Since Ni
G
(C3) = 0, G is

complete bipartite,which is impossible.Now let (λ0 + λ1 + λ2) /= 0. SinceNi
G
(C3) = 0, fromtheequality

2Ni
G
(C3) = (λ0 + λ1 + λ2)di + (λ0λ1λ2) the result follows.

Lemma 10. Let G be a connected graph with three distinct eigenvalues λ0 > λ1 > λ2. Then the inequality

−λ2λ1 < λ0 holds.

Proof. Suppose that G has n vertices and m edges. Let the spectrum of G be {[λ0]1, [λ1]m1 , [λ2]m2 }.
Now from Eqs. (1) and (2) we get (λ1 − λ2)m2 = nλ1 + (λ0 − λ1). By Eqs. (2) and (3) we obtain λ2(λ2 −
λ1)m2 = 2m − λ0(λ0 − λ1). By comparing these equationswehave−λ2(nλ1 + λ0 − λ1) = 2m − λ0(λ0 −
λ1), and so −λ2λ1n + (λ0 − λ2)(λ0 − λ1) = 2m.

Using Lemma 1, we obtain

−λ2λ1 + (λ0 − λ2)(λ0 − λ1)

n
� λ0.

Since λ0 > λ1 > λ2, we deduce that −λ2λ1 < λ0. �

Lemma 11. Let G be a connected graph with spectrum {[5]1, [1]m1 , [−3]m2 } for some positive integers m1

and m2. Then G is the strongly regular graph with parameters srg-(16, 5, 0, 2) (the Clebsch graph).

Proof. From (5), we have

m2 = n + 4

4
= 2m − 20

12
= −6NG(C3) + 120

24
.

First let NG(C3) > 0. Since m2 = (−6NG(C3) + 120)/24 is integer, NG(C3) is a multiple of 4. Moreover

we have 2m = −3NG(C3) + 80 and som � 34. Sincem2 = (2m − 20)/12,m is even. On the other hand,

3n = 2m − 32 > 3. It is clear that there is no even18 � m � 34 such that 2m − 32be amultiple of 3 and

m � n(n − 1)/2 unlessm = 28, 34. Ifm = 28, then G = K8 and so λ0 = 7, which is not true. Form = 34

we have n = 12 andNG(C3) = 4. Theminimal polynomial of A(G) is PG(λ) = λ3 − 3λ2 − 13λ + 15. Sowe

have 2Ni
G
(C3) = 3di − 15. On the other hand NG(C3) = 4 and so we get

(Ni
G(C3), di) ∈ {(0, 5), (3, 7)}.

If G is a 5-regular graph (respectively, 7-regular graph), then NG(C3) = 0 (respectively,m = 42). Which

is impossible. So there are vertices vi and vj of G with di = 5 and dj = 7 and so by Lemma 2, we get

αiαj = √
8, which contradicts corollary 1.

Now let NG(C3) = 0. Since G is not complete bipartite by Lemma 9, we have G is a 5-regular graph.

Using Lemma2 and the above equalities, it follows thatG is the strongly regular graphwith parameters

srg-(16, 5, 0, 2), which is the Clebsch graph. �
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In the next theorem we determine all graphs with three distinct eigenvalues and index at most 5.

Theorem 6. The connected integral graphs with three distinct eigenvalues and index at most 5 are the

triangular graph T(4), the lattice graph L2(3),Kp,q where 1 < pq � 25 is square, the cone over the Petersen

graph, the Clebsch graph and the Petersen graph.

Proof. Suppose that G is an integral graph with index at most 5, n vertices, m edges and spectrum

{[λ0]1, [λ1]m1 , [λ2]m2 }.
If λ2 = −λ0, then G is a complete bipartite graph, and so G = Kp,q where 1 < pq � 25 is square. If

λ2 � −2 then by Theorem 3, G is one of the triangular graph T(4), K1,4, L2(2) = K2,2 = CP(2), L2(3), the

cone over the Petersen graph and the Petersen graph.

From Lemma 8, if λ1 � 0, then G is a complete bipartite graph or T(4). Therefore we may assume

that −λ0 < λ2 < −2 and λ1 > 0. Hence we consider the following two cases:

Case 1. Let λ0 = 4. Since −4 < λ2 < −2 and 0 < λ1 < 4, we have λ2 = −3 and λ1 ∈ {1, 2, 3}. By Lemma

10, we can see that λ1 /= 2, 3. So we have λ1 = 1.

Using (5), we obtain

m2 = n + 3

4
= 2m − 12

12
= −6NG(C3) + 60

24
.

First suppose that NG(C3) > 0. From the above equalities, we can see that 2m − 12 = −3NG(C3) + 30

and 2 | NG(C3) and so m � 18. On the other hand we have 3n = 2m − 21. Since there is no integral

graph on n � 5 vertices with three distinct eigenvalues and 3n = 2m − 21, we have m > 18, which is

impossible. Now let NG(C3) = 0. Since G is not complete bipartite by Lemma 9, G is a 6-regular graph.

This means that λ0 = 6, which is impossible.

Case 2. Let λ0 = 5. Since −5 < λ2 < −2 and 0 < λ1 < 5 we have λ2 ∈ {−3,−4} and λ1 ∈ {1, 2, 3, 4}.
First let λ2 = −4. Then by Lemma 10, we can see that λ1 /= 2, 3, 4. So let λ1 = 1. From (5), we get

m2 = n + 4

5
= 2m − 20

20
= −6NG(C3) + 120

60
.

By the equality (2m − 20)/20 = (−6NG(C3) + 120)/60wehavem = −NG(C3) + 30and som � 30. Since

(n + 4)/5 is integer, n − 1 � 5 is a multiple of 5. Moreover by the equality (n + 4)/5 = (2m − 20)/20

and the fact that m � n(n − 1)/2 we get n > 6 and so m > 30, which is impossible.

Now let λ2 = −3. Then from Lemma 10, we get λ1 /= 2, 3, 4 and so λ1 = 1. Therefore by Lemma 11,

G is the strongly regular graph with parameters srg-(16, 5, 0, 2), which is the Clebsch graph.

Lemma 12. Let G be a connected graph with spectrum {[6]1, [1]m1 , [−3]m2 } for some positive integers m1

and m2. Then G is the strongly regular graph with parameters srg-(15, 6, 1, 3) (the (6, 2)-Kneser graph).

Proof. From 5, we obtain

m2 = n + 5

4
= 2m − 30

12
= 2m − 6NG(C3) + 180

36
.

Since4m = −6NG(C3) + 270,wehavem � 67.Ontheotherhandwehave2m = 3n + 45,byapplying

Lemma1,wegetn � 15. Sowehavem � 45.Moreoverm2 = (2m − 30)/12 is integer and som is amul-

tiple of 3. Therefore m ∈ {45, 48, 51, 54, 57, 60, 63, 66}. It follows that n ∈ {15, 17, 19, 21, 23, 25, 27, 29}.
Again m2 = (n + 5)/4 is integer and so n /= 17, 21, 25, 29. First let n ∈ {15, 19}. Using Lemma 3, there

is no non-regular graph on n vertices with spectrum {[6]1, [1]m1 , [−3]m2 }. If G is regular, then G is a

6-regular graph on 15 vertices and so G is the strongly regular graph with parameters srg-(15, 6, 1, 3).

Note that there is no strongly regular graph on 19 vertices. Now we assume that n ∈ {23, 27}. The
minimal polynomial of A(G) is PA(λ) = λ3 − 4λ2 − 15λ + 18. So for each vi ∈ V(G) we have

2Ni
G(C3) = 4di − 18.

Now assume that n = 23, then we get NG(C3) = 7. It follows that for at most 21 vertices Ni
G
(C3) /= 0.

This means that for at least 2 vertices we have Ni
G
(C3) = 0 and so di = 18/4, which is impossible.
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For n = 27 we have NG(C3) = 3. By a similar argument, we can see that n = 27 is impossible too. So

n /= 23, 27. �

In the next theorem integral graphs with three distinct eigenvalues and index 6 are identified.

Theorem 7. The only connected integral graphs with three distinct eigenvalues and index 6 are the Shrik-

hande graph, the strongly regular graphs with parameters srg-(15, 6, 1, 3), srg-(9, 6, 3, 6), the lattice graph

L2(4),CP(4), T(5),K1,36,K2,18,K3,12,K4,9 and K6,6.

Proof. Suppose that G is an integral graphwith index 6, n vertices,m edges and spectrum {[6]1, [λ1]m1 ,

[λ2]m2 }. If λ2 = −6, then G is a complete bipartite graph and so G is one of K1,36,K2,18,K3,12,K4,9 and

K6,6. If λ2 � −2 then by Theorem 3, G is one of the Shrikhande graph, the lattice graph L2(4), CP(4)

and T(5). From Lemma 8, if λ1 � 0, then G is a complete bipartite graph, CP(4) or the strongly regular

graph with parameters srg-(9, 6, 3, 6). Therefore we can assume that −6 < λ2 < −2 and λ1 > 0. Since

−6 < λ2 < −2,we have λ2 ∈ {−5,−4,−3} and so by Lemma10, λ1 = 1. Thereforewe have the following

three cases.

Case 1. Assume that λ2 = −5. Using (5), we get

m2 = n + 5

6
= 2m − 30

30
= 2m − 6NG(C3) + 180

150
.

Since 8m = −6NG(C3) + 330, we have m � 41. Moreover m2 = (2m − 30)/30 is integer and so m ∈
{15, 30}. On the other hand 5n = 2m − 55. It follows that n = 1, which is false.

Case 2. Let λ2 = −4. From (5) we have

m2 = n + 5

5
= 2m − 30

20
= 2m − 6NG(C3) + 180

80
.

From the equality (2m − 30)/20 = (2m − 6NG(C3) + 180)/80 we can see that, m � 50. Moreover it is

clear thatm is a multiple of 5 and 4n = 2m − 50. It follows thatm ∈ {35, 45}. Sincem � n(n − 1)/2 we

have n = 10 andm = 45 and so G = K10. But the maximum eigenvalue of K10 is 9.

Case 3. Assume that λ2 = −3. By Lemma 12, G is the strongly regular graph with parameters srg-

(15, 6, 1, 3). �

Lemma 13. Let G be a connected graph with spectrum {[7]1, [2]m1 , [−3]m2 } for some positive integers m1

and m2. Then G is the Hoffman-Singleton graph.

Proof. From (5), we have

m2 = 2n + 5

5
= 2m − 35

15
= 4m − 6NG(C3) + 245

45
.

First let NG(C3) > 0. By the third equality we deduce that 2m � 344. Since by the second equality

we have 2m = 6n + 50, so n � 49. On the other hand by Lemma 1, λ0 = 7 � 2m/n = (6n + 50)/n, so

n � 50, which is a contradiction. Now let NG(C3) = 0. Since G is not complete bipartite by Lemma 9, G

is a 7-regular graph. Using the above equalities and Lemma 2, we can see that G is the strongly regular

graph with parameters srg-(50, 7, 0, 1), that is, the Hoffman-Singleton graph. �

Lemma 14. Let m1 and m2 be positive integers. There is no connected graph with spectrum {[7]1, [1]m1 ,

[−3]m2 }.

Proof. Let G be a connected graph with parameters {[7]1, [1]m1 , [−3]m2 }. Using (5), we obtain

m2 = n + 6

4
= 2m − 42

12
= 2m − 6NG(C3) + 294

36
.

Since G is not complete bipartite if NG(C3) = 0, then by Lemma 9, for each vertex vi we have di = 21/5,

a contradiction. So we have NG(C3) > 0. From the above equalities, we can see that NG(C3) is even.
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So by the third equality we get m � 102. Since (n + 6)/4 = (2m − 42)/12, we have n � 48. More-

over by Lemma 1, we get λ0 = 7 � 2m/n = (3n + 60)/n and so n � 15. Since we have 4 | n + 6, then

n ∈ {18, 22, 26, 30, 34, 38, 42, 46}. By Lemma 3 and the fact that there is no strongly regular graph on 18

vertices with index 7 we have n /= 18.

Theminimal polynomial of A(G) is PA(λ) = λ3 − 5λ2 − 17λ + 21. So for vi ∈ V(G)we have 2Ni
G
(C3) =

5di − 21. If there is some vertex, like vi, so that Ni
G
(C3) = 0, then di = 21/5, that is impossible. Hence

we can assume that for each vi ∈ V(G), Ni
G
(C3) > 0. Let n = 46. Then NG(C3) = 4 and so for at most 12

vertices we have Ni
G
(C3) /= 0, which is false. For n = 42, NG(C3) = 8 and for n = 38, NG(C3) = 12. By a

similar discussion we can see that these cases are impossible.

For n ∈ {22, 26, 30, 34} we have (NG(C3),n) ∈ {(28, 22), (24, 26), (20, 30), (16, 34)}, so by the equality

2Ni
G
(C3) = 5di − 21 we get (Ni

G
(C3), di) ∈ {(2, 5), (7, 7), (12, 9), (17, 11), (22, 13), (27, 15)}. But if the case

(27, 15) happens, then n = 22 andwe can see that there are some vertices withNi
G
(C3) = 0, contradict-

ing to our assumption. It is clear that

3NG(C3) =
∑

vi∈V(G)

Ni
G(C3).

Since Ni
G
(C3) � 2 for each vi ∈ V(G) and for n = 34 we have NG(C3) = 16, by the above equation we

get 48 = ∑34
i=1 N

i
G
(C3) � 68. Which is a contradiction. Let n = 30. Then NG(C3) = 20 and so we have

60 = ∑30
i=1 N

i
G
(C3). This means that for each vi ∈ V(G), di = 5. So G is a 5-regular graph and so λ0 = 5

which is not true.

Now we define xk = |{vi ∈ V(G)|Ni
G
(C3) = k}|. If we consider the case n = 26, then we have m = 69

andNG(C3) = 24.With theaboveassumptionweobtain x2 + x7 + x12 + x17 + x22 = 26, and5x2 + 7x7 +
9x12 + 11x17 + 13x22 = 138. From these equations we get

2x7 + 4x12 + 6x17 + 8x22 = 8. (6)

Doing the same for the case n = 22, we obtain

2x7 + 4x12 + 6x17 + 8x22 = 16. (7)

Now by Lemma 2, we compute for each vertex vi its corresponding αi and di

(αi, di) ∈ {(
√
2, 5), (2, 7), (

√
6, 9), (

√
8, 11), (

√
10, 13)}.

Since by Corollary 1, αiαj for all i, j is integer, thenwe have only vertices of degree 5 and 11. It follows

that x7 = x12 = x22 = 0. So for n = 26 by (6), we get 6x17 = 8 and for n = 22 by (7), we have 6x17 = 16,

which are impossible. �

Finally in the next theorem we find all integral graphs with three distinct eigenvalues and index 7.

Theorem 8. All connected integral graphswith threedistinct eigenvaluesand index7arepreciselyK1,49,K7,7

and the Hoffman-Singleton graph.

Proof. Suppose that G is an integral graph with index 7, n vertices, m edges and with spectrum

{[7]1, [λ1]m1 , [λ2]m2 } where λ0 > λ1 > λ2.

If λ2 = −7, then G is a complete bipartite graph and so G is either K1,49 or K7,7. By Theorem 3, there

is no G with index 7 and λ2 � −2. From Lemma 8, if λ1 � 0, then G is a complete bipartite graph.

Therefore we may assume that −7 < λ2 < −2 and λ1 > 0.

By Lemma 10, for λ2 ∈ {−6,−5,−4}we have λ1 = 1 and for λ2 = −3we have λ1 ∈ {1, 2}. So we consider

the following four cases.

Case 1. Let λ2 = −6. From (5), we get

m2 = n + 6

7
= 2m − 42

42
= 2m − 6NG(C3) + 294

252
.

By the above equalities, we get m � 54 and m is a multiple of 21. Therefore m ∈ {21, 42}. Moreover

6n = 2m − 78 and so n = −6, 1, which is not true.
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Case 2. Let λ2 = −5. From (5), we obtain

m2 = n + 6

6
= 2m − 42

30
= 2m − 6NG(C3) + 294

150
.

By the third equality we can see that, m � 63. Since n is a multiple of 6, from the second equality

we get m � 51. On the other hand m2 = (2m − 42)/30 is integer. Hence m is a multiple of 3 and so

m ∈ {51, 54, 57, 60, 63}. Using the factsm � n(n − 1)/2 and 5 | 2m − 42, we getm /= 51, 54, 57, 60, 63.

Case 3. Let λ2 = −4. Using (5), we have

m2 = n + 6

5
= 2m − 42

20
= 2m − 6NG(C3) + 294

80
.

From the third equality we get m � 77. It follows that n � 22. It is clear that n + 6 is a multiple of 5,

so n ∈ {4, 9, 14, 19}. Since there is no strongly regular graph on n ∈ {4, 9, 14, 19} vertices with λ2 = −4

and λ0 = 7, by Lemma 3, there is no graph with n = 4, 9, 14, 19.

Case4. Letλ2 = −3. Soλ1 ∈ {1, 2}. But fromLemmas13and14,weknowthat theonly graph isHoffman-

Singleton. �

In the next theorem integral graphs with three distinct eigenvalues and index less than 8 are

identified. Since all non-integral graphs with three distinct eigenvalues and index less than 8 are

characterized in Theorem 5, we have the complete characterization of graphs with three distinct

eigenvalues and index less than 8.

Theorem 9. If G is a connected integral graphwith three distinct eigenvalues and index less than8, thenG is

oneof the followinggraphs: the lattice graphs L2(3), L2(4), the triangular graphs T(4), T(5), the cocktail party

graph CP(4),Kp,q where 1 < pq � 49 is a square, the strongly regular graphwith parameters srg-(9, 6, 3, 6),

the Shrikhande graph, the cone over the Petersen graph, the Petersen graph, the Hoffman-Singleton graph

and the Clebsch graph.

Proof. Summing up the results of Theorems 6, 7 and 8, the result follows. �

Finally using Theorems 5 and 9, Theorem 1 can be proved.
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