Math777: Graph Theory (II)
 Spring, 2014

Homework 2, due Tuesday, Mar. 4
Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly. You also get another bonus point if your solution is selected as a standard solution (in this case you will be asked to send me the latex code of this solution.)

1. [page 195, \#4] Determine the value of $e x\left(n, K_{1, r}\right)$ for all $r, n \in \mathbb{N}$.
2. [page 195, \#5] Given $k>0$, determine the extremal graphs without a matching of size k.
3. [page 196, \#11] Let $1 \leq r \leq n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where $|A|=|B|=n$, and assume that $K_{r, r} \not \subset G$. Show that

$$
\sum_{x \in A}\binom{d(x)}{r} \leq(r-1)\binom{n}{r}
$$

Use it to deduce $e x\left(n, K_{r, r}\right) \leq c n^{2-1 / r}$.
4. [page 196, \#13] Given a tree T, find an upper bound for $e x(n, T)$ that is linear in n and independent of the structure of T, i.e., depends only on $|T|$.
5. [page 197, \#20] Given a graph G with $\epsilon(G) \geq k \in \mathbb{N}$, find a minor $H \prec G$ such that $\delta(H) \geq k \geq|H| / 2$.

6 If a graph G_{n} contains no K_{4} and only contains $o(n)$ independent vertices, then $\left\|G_{n}\right\|<\left(\frac{1}{8}+o(1)\right) n^{2}$. (Hint: apply Szemerédi’s Regularity Lemma.)

