Math777: Graph Theory (II) Spring, 2014 Homework 2, due Tuesday, Mar. 4

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly. You also get another bonus point if your solution is selected as a standard solution (in this case you will be asked to send me the latex code of this solution.)

- **1.** [page 195, #4] Determine the value of $ex(n, K_{1,r})$ for all $r, n \in \mathbb{N}$.
- **2.** [page 195, #5] Given k > 0, determine the extremal graphs without a matching of size k.
- **3.** [page 196, #11] Let $1 \le r \le n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where |A| = |B| = n, and assume that $K_{r,r} \not\subset G$. Show that

$$\sum_{x \in A} \binom{d(x)}{r} \le (r-1)\binom{n}{r}.$$

Use it to deduce $ex(n, K_{r,r}) \leq cn^{2-1/r}$.

- 4. [page 196, #13] Given a tree T, find an upper bound for ex(n,T) that is linear in n and independent of the structure of T, i.e., depends only on |T|.
- 5. [page 197, #20] Given a graph G with $\epsilon(G) \ge k \in \mathbb{N}$, find a minor $H \prec G$ such that $\delta(H) \ge k \ge |H|/2$.
- 6 If a graph G_n contains no K_4 and only contains o(n) independent vertices, then $||G_n|| < (\frac{1}{8} + o(1))n^2$. (Hint: apply Szemerédi's Regularity Lemma.)