Math776: Graph Theory (I)

Fall, 2013
Homework 5, due Friday, Nov. 15
Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly. You also get another bonus point if your solution is selected as a standard solution (in this case you will be asked to send me the latex code of this solution.)

1. [page $\mathbf{8 4}, \# \mathbf{1 8}$] Let $k \geq 2$. Show that every k-connected graph of order at least $2 k$ contains a cycle of length at least $2 k$.
2. [page $84, \# 19]$ Let $k \geq 2$. Show that in a k-connected graph any k vertices lie on a common cycle.
3. [page 84, \#24] Derive Tutte's 1-factor theorem from Mader's theorem.
4. [page 84, \#26] For every $k \in \mathbb{N}$ find an $l=l(k)$, as large as possible, such that not every l-connected graph is k-linked.
5. [page 111, \#4] show that every planar graph is a union of three forests.
6. [page 111, \#13] Find a 2-connected planar graph whose drawings are all topologically isomorphic but whose planar embeddings are not all equivalent.
