Math776: Graph Theory (I)

Fall, 2013

Homework 2, due Friday, Sept. 20

Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly. You also get another bonus point if your solution is selected as a standard solution (in this case you will be asked to send me the latex code of this solution.)

1. [page 31, $\# \mathbf{2 0}$] Show that a graph is 2-edge-connected if and only if it has a strongly-connected orientation, one in which every vertex can be reached from every other vertex by a directed path.
2. [page 31, \#21] Find a short inductive proof for the existence of normal spanning trees in finite connected graphs.
3. [page 31, \#24] Show that every automorphism of a tree fixes a vertex or an edge.
4. [page 32, \#27] Prove or disprove that a graph is bipartite if and only if no two adjacent vertices have the same distance from any other vertices.
5. [page 32, \#28] Find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that, for all $k \in \mathbb{N}$, every graph of average degree at least $f(k)$ has a bipartite subgraph of minimum degree at least k.
6. [page 32, \#30] Prove or Disprove that every connected graph contains a walk that traverses each of its edges exactly once in each direction.
