Math776: Graph Theory (I)

Fall, 2013
Homework 1, due Friday, Sept. 6
Select any 5 problems to solve. The total score of this homework is 10 points. You get a bonus point if you solve all 6 problems correctly. You also get another bonus point if your solution is selected as a standard solution (in this case you will be asked to send me the latex code of this solution.)

1. [page 30,\#2] Determine the average degree, number of edges, diameter, girth, and circumference of the hypercube graph Q_{d}.
2. [page 30, \#3] Let G be a graph containing a cycle C, and assume that G contains a path of length at least k between two vertices of C. Show that G contains a cycle of length at least \sqrt{k}.
3. [page 30, \#8] Show that every connected graph G contains a path of length at least $\min \{2 \delta(G),|G|-1\}$.
4. [page 30, \#9] Show that a connected graph of diameter k and minimum degree d has at least about $k d / 3$ vertices but need not have substantially more.
5. [page 30, \#12] Determine $\kappa(G)$ and $\lambda(G)$ for $G=P_{m}, C_{n}, K_{n}, K_{m, n}$, and $Q_{d} ; d, m, n \geq 3$.
6. [page 31, \#18] Show that a tree without a vertex of degree 2 has more leaves than other vertices. Can you find a very short proof that does not use induction?
