Math 778S Spectral Graph Theory
Handout #3: Eigenvalues of Adjacency Matrix

The Cartesian product (denoted by G O H) of two simple graphs G and H
has the vertex-set V(G) x V(H). For any u,v € V(GQ) and =,y € V(H), (u,x) is
adjacent to (v,y) if either “u = v and xy € E(H)” or “uv € E(G) and z = y”.

Lemma 1 Suppose A1,...,\, are eigenvalues of the adjacency matrix of a
graph G and p1, ..., uy are eigenvalues of the adjacency matriz of a graph H.
Then the eigenvalues of the adjacency matriz of the Cartesian product G O H
are i +pj for 1 <i<nandl <j<m.

Proof: Let A (or B) be the adjacency matrix of G (or H) respectively. For any
eigenvalue A of A and any eigenvalue p of B, we would like to show A + p is an
eigenvalue of G J H. Let « be the eigenvector of A corresponding to A and (8
be the eigenvector of B corresponding to pu. We have

Aa = o (1)
BB = pup. (2)

Equivalently, for any u € V(G),

E 0y = Ay;

v~

Z/By = :uﬂx

Y~z

for any z € V(H),

Let a ® B be the n x m column vector defined by entries

(a & /G)u,:r = ayfe.

Let C be the adjacency matrix of G 0 H. We would like to show a ® § is an
eigenvector of C. We have, for any (u,z) € V(G O H),

Z (O‘ & 5)%1} = Z O‘vﬂy

(v,y)~(u,z) (v,y)~(u,z)

Z O‘uﬁy + Z e

(w,y)~(u,z) (v,@)~(u,z)

= Z auﬁy + Z avﬂw

Yy~ VU

= O‘uZﬁy+ﬂmZav

Yy~T v

Qy iz + By
= A +w(a®B)uz



This is equivalent to
Clax B) = (A + p)(a x B).

Thus, A + p is an eigenvalue of G I H.
For1 <i<mand1l<j <m, )\ + p; are eigenvalues of G 0 H. Since
G O H has nm vertices, these eigenvalues (with multiplicity) are all eigenvalues
of GOH. O
Remark: The adjacency matrix of G [ H can be written as AQ L, +1,®B.
Here ® is tensor product of matrices.

Hypercube Q,: The vertices of ), are points in n-dimensional space over
the field of two elements F, = {0,1}. Two points are adjacent in @, if and only
if they differ by exactly one coordinate.

We have Q1 = P>, Q2 = C4, and )3 is the cube in 3-dimensional space.
We have Q11 = Q1 O Q. The eigenvalues of @),, can be determined from the
eigenvalues of ()7 and the above lemma.

Q1 = P, has eigenvalues +1. @), has eigenvalues n — 2i with multiplicity (?)
for0<i<n.

Regular graphs: The degree of a vertex v in G is the number of edges incident
to v. If all degrees are equal to d, then G is called a d-regular graph. Let 1
be the column vector of all entries equal to 1. If G is a regular graph, then
Al = d1. Hence, 1 is an eigenvector for the eigenvalue d.

Eigenvalues of K,,: Let J = 1’1 be the n X n-matrix with all entries 1. Since
J is a rank 1 matrix, J has eigenvalues 0 with multiplicity n — 1. It is easy
to see that the nonzero eigenvalue of J is n. The complete graph K, has the
adjacency matrix J — I. Thus, K, has an eigenvalue n — 1 of multiplicity 1 and
—1 of multiplicity n — 1.

0100 ... 0
001 0 ... 0
Eigenvalues of C),: Let Q = 0001 0
1000 ... 0

(Q can be viewed as the adjacency matrix of the directed cycle.) We have
A= Q+ Q. Note that Q™ = I. Let X be the eigenvalue of Q. We have \" = 1.
The eigenvalues of ) are precisely n-th root of 1:

2k 2k
o" :cos(—ﬂ)Jr\/flsin(—ﬂ), for0 <k <n-1
n n
Note Q' = Q™ !. Thus, A = Q + Q' has eigenvalues
X 2k
P+ Mt = 2R(pF) = 2cos(=T)

for k=0,1,2,...,n— 1.



Let uy > puo > ... up be the eigenvalues of the adjacency matrix of a graph
G. We refer 11 = pimax and pp, = tmin. We have

Umax = sup x'Azx
[lz|l=1

Umin = inf 2/Ax
[lz|l=1

Suppose f(z) = 2’ Ax reaches the maximum at « on the unit sphere. Then
all coordinates of o are non-negative.

Lemma 2 If H is a subgraph of G, then we have

,umax(G) > /Jmax(H)'

Proof: Without loss of generality, we assume V(H) = V(G). (Otherwise, we
add some isolated vertices to H. It doesn’t change the maximum eigenvalue of
Let a be the eigenvector Ay corresponding to pimax(H). We have

Hmax (H) = O/AHa

= 2 Z ;0
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Let  be the minimum degree and A be the maximum degree of G. We have
the following bound on piax.

Lemma 3 For every graph G, we have
5(G) < ftmax(G) < A(G).

Proof: Let « be an eigenvector for eigenvalue p = pimax(G). Since a # 0,
we can assume « has at least one positive coordinate. (If all coordinates are
none-positive, we consider —« instead.)

Let aj = max; a; be the largest coordinate of . Since Aa = ua, we have

pay = (Aa), = Zai < Aaqy,.
ik

Thus, p < A.



Now we show fimax(G) > 6(G).

Hmax = sup SU/AgiL'
[l][=1
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A k-coloring of a graph G is a map c:V(G) — [k] = {1,2,...,k}. A k-
coloring is said to be proper if the end vertices of any edge in G receive different
colors. lLe.,
c(u) # c(v) for any u ~ v.

In this case, we say G is k-colorable.

The chromatic number denoted by x(G) is the minimum integer k such that
G is k-colorable. For example, x(K,) = n. x(G) = 2 if and only if G is a
nonempty bipartite graph.

There is a simple bound on x(G).

Theorem 1 For every G, x(G) <1+ A(G).

Proof: Given any order vy, vs,...,v,, we color vertices one by one using A 4+ 1
colors. At time 4, we assume vy, ...,v;_1 has been colored properly. Note that
v; has at most A neighbors in vy, ...,v;_1. We can pickup a distinct color for v;

other than those neighbors received. The resulted coloring is a proper coloring.
0.

Theorem 2 (Wilf 1967) For every G, x(G) < 14 Amax(G).

Proof: In the proof of the previous lemma, the graph G is k-colorable if v;

has at most £ — 1 neighbors in the induced subgraph on vy, vs,...,v; for all
i=1,2,...,n.

Since the order of the vertices can be arbitrary, we choose v,, to be the vertex
having the minimum degree. For i =n,n —1,...,1, let v; be the vertex having
minimum degree in the induced subgraph G; on vy, vs,...,v;. Note

J(Gz) S Mmax(Gz)
S Nmax(G)

Thus, under this order, the previous greedy algorithm results a proper k-coloring
for any k < 14 pimax(G). O



Remark: Brook’s theorem states that if G is a simple connected graph
other than the complete graph and odd cycles then

X(G) < A(G).
It is unknown whether similar result can be proved using pimax(G) instead.

Assume p3 > po > ... > muy are distinct eigenvalues of A. The ¢(z) =
Hle(x — pg) is called the minimal polynomial of A. We have

$(A) = 0.

Any polynomial f(z) with f(A) = 0 is divisible by ¢(z).

For any pair of vertices u, v, the distance d(u, v) is the shortest length of any
uv-path. The diameter of graph G is the maximum distance among all pairs of
vertices which belongs to the same connected component.

Theorem 3 The diameter of a graph is less than its number of distinct eigen-
values.

Proof: Without loss of generality, we can assume G is connected. Let k be the
number of distinct eigenvalues. The minimum polynomial ¢(z) has degree k.
Since ¢(A) = 0, A* can be expressed as a linear combination of I, A4, ..., AF~L.
Suppose the diameter of G is greater than or equal to k. There exists a pair
of vertices u and v satisfying d(u,v) = k. We have (4%),, > 1 and (A4%),, =0
for i = 0,1,2,...,A*"!. This is a contradiction to the fact A* is a linear
combination of I, A, ..., A¥~1. O
This result is tight for the hypercube Q.



