
Math 778S Spectral Graph Theory
Handout #3: Eigenvalues of Adjacency Matrix

The Cartesian product (denoted by G � H) of two simple graphs G and H
has the vertex-set V (G)×V (H). For any u, v ∈ V (G) and x, y ∈ V (H), (u, x) is
adjacent to (v, y) if either “u = v and xy ∈ E(H)” or “uv ∈ E(G) and x = y”.

Lemma 1 Suppose λ1, . . . , λn are eigenvalues of the adjacency matrix of a
graph G and µ1, . . . , µm are eigenvalues of the adjacency matrix of a graph H.
Then the eigenvalues of the adjacency matrix of the Cartesian product G � H
are λi + µj for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof: Let A (or B) be the adjacency matrix of G (or H) respectively. For any
eigenvalue λ of A and any eigenvalue µ of B, we would like to show λ+ µ is an
eigenvalue of G � H. Let α be the eigenvector of A corresponding to λ and β
be the eigenvector of B corresponding to µ. We have

Aα = λα (1)
Bβ = µβ. (2)

Equivalently, for any u ∈ V (G), ∑
v∼u

αv = λαu;

for any x ∈ V (H), ∑
y∼x

βy = µβx.

Let α⊗ β be the n×m column vector defined by entries

(α⊗ β)u,x = αuβx.

Let C be the adjacency matrix of G � H. We would like to show α ⊗ β is an
eigenvector of C. We have, for any (u, x) ∈ V (G � H),

∑
(v,y)∼(u,x)

(α⊗ β)v,y =
∑

(v,y)∼(u,x)

αvβy

=
∑

(u,y)∼(u,x)

αuβy +
∑

(v,x)∼(u,x)

αvβx

=
∑
y∼x

αuβy +
∑
v∼u

αvβx

= αu

∑
y∼x

βy + βx

∑
v∼u

αv

= αuµβx + βxλαu

= (λ+ µ)(α⊗ β)u,x.
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This is equivalent to

C(α× β) = (λ+ µ)(α× β).

Thus, λ+ µ is an eigenvalue of G � H.
For 1 ≤ i ≤ n and 1 ≤ j ≤ m, λi + µj are eigenvalues of G � H. Since

G � H has nm vertices, these eigenvalues (with multiplicity) are all eigenvalues
of G � H. �

Remark: The adjacency matrix of G � H can be written as A⊗Im+In⊗B.
Here ⊗ is tensor product of matrices.

Hypercube Qn: The vertices of Qn are points in n-dimensional space over
the field of two elements F2 = {0, 1}. Two points are adjacent in Qn if and only
if they differ by exactly one coordinate.

We have Q1 = P2, Q2 = C4, and Q3 is the cube in 3-dimensional space.
We have Qn+1 = Q1 � Qn. The eigenvalues of Qn can be determined from the
eigenvalues of Q1 and the above lemma.

Q1 = P2 has eigenvalues ±1. Qn has eigenvalues n−2i with multiplicity
(
n
i

)
for 0 ≤ i ≤ n.

Regular graphs: The degree of a vertex v in G is the number of edges incident
to v. If all degrees are equal to d, then G is called a d-regular graph. Let 1
be the column vector of all entries equal to 1. If G is a regular graph, then
A1 = d1. Hence, 1 is an eigenvector for the eigenvalue d.

Eigenvalues of Kn: Let J = 1′1 be the n× n-matrix with all entries 1. Since
J is a rank 1 matrix, J has eigenvalues 0 with multiplicity n − 1. It is easy
to see that the nonzero eigenvalue of J is n. The complete graph Kn has the
adjacency matrix J − I. Thus, Kn has an eigenvalue n− 1 of multiplicity 1 and
−1 of multiplicity n− 1.

Eigenvalues of Cn: Let Q =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 0

.

(Q can be viewed as the adjacency matrix of the directed cycle.) We have
A = Q+Q′. Note that Qn = I. Let λ be the eigenvalue of Q. We have λn = 1.
The eigenvalues of Q are precisely n-th root of 1:

ρk = cos(
2kπ
n

) +
√
−1 sin(

2kπ
n

), for 0 ≤ k ≤ n− 1.

Note Q′ = Qn−1. Thus, A = Q+Q′ has eigenvalues

ρk + ρk(n−1 = 2<(ρk) = 2 cos(
2kπ
n

)

for k = 0, 1, 2, . . . , n− 1.
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Let µ1 ≥ µ2 ≥ . . . µn be the eigenvalues of the adjacency matrix of a graph
G. We refer µ1 = µmax and µn = µmin. We have

µmax = sup
‖x‖=1

x′Ax

µmin = inf
‖x‖=1

x′Ax

Suppose f(x) = x′Ax reaches the maximum at α on the unit sphere. Then
all coordinates of α are non-negative.

Lemma 2 If H is a subgraph of G, then we have

µmax(G) ≥ µmax(H).

Proof: Without loss of generality, we assume V (H) = V (G). (Otherwise, we
add some isolated vertices to H. It doesn’t change the maximum eigenvalue of
H.)

Let α be the eigenvector AH corresponding to µmax(H). We have

µmax(H) = α′AHα

= 2
∑

ij∈E(H)

αiαj

≤ 2
∑

ij∈E(G)

αiαj

= α′AGα

≤ sup
‖x‖=1

x′AGx

= µmax(G).

�
Let δ be the minimum degree and ∆ be the maximum degree of G. We have

the following bound on µmax.

Lemma 3 For every graph G, we have

δ(G) ≤ µmax(G) ≤ ∆(G).

Proof: Let α be an eigenvector for eigenvalue µ = µmax(G). Since α 6= 0,
we can assume α has at least one positive coordinate. (If all coordinates are
none-positive, we consider −α instead.)

Let αk = maxi αi be the largest coordinate of α. Since Aα = µα, we have

µαk = (Aα)k =
∑
i∼k

αi ≤ ∆αk.

Thus, µ ≤ ∆.
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Now we show µmax(G) ≥ δ(G).

µmax = sup
‖x‖=1

x′AGx

≥ 1√
n
1′AG

1√
n
1

=
1
n

2
∑
i∼j

aij

=
2|E(G)|

n
≥ δ(G).

�
A k-coloring of a graph G is a map c:V (G) → [k] = {1, 2, . . . , k}. A k-

coloring is said to be proper if the end vertices of any edge in G receive different
colors. I.e.,

c(u) 6= c(v) for any u ∼ v.

In this case, we say G is k-colorable.
The chromatic number denoted by χ(G) is the minimum integer k such that

G is k-colorable. For example, χ(Kn) = n. χ(G) = 2 if and only if G is a
nonempty bipartite graph.

There is a simple bound on χ(G).

Theorem 1 For every G, χ(G) ≤ 1 + ∆(G).

Proof: Given any order v1, v2, . . . , vn, we color vertices one by one using ∆ + 1
colors. At time i, we assume v1, . . . , vi−1 has been colored properly. Note that
vi has at most ∆ neighbors in v1, . . . , vi−1. We can pickup a distinct color for vi

other than those neighbors received. The resulted coloring is a proper coloring.
�.

Theorem 2 (Wilf 1967) For every G, χ(G) ≤ 1 + λmax(G).

Proof: In the proof of the previous lemma, the graph G is k-colorable if vi

has at most k − 1 neighbors in the induced subgraph on v1, v2, . . . , vi for all
i = 1, 2, . . . , n.

Since the order of the vertices can be arbitrary, we choose vn to be the vertex
having the minimum degree. For i = n, n− 1, . . . , 1, let vi be the vertex having
minimum degree in the induced subgraph Gi on v1, v2, . . . , vi. Note

δ(Gi) ≤ µmax(Gi)
≤ µmax(G).

Thus, under this order, the previous greedy algorithm results a proper k-coloring
for any k ≤ 1 + µmax(G). �
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Remark: Brook’s theorem states that if G is a simple connected graph
other than the complete graph and odd cycles then

χ(G) ≤ ∆(G).

It is unknown whether similar result can be proved using µmax(G) instead.

Assume µ1 > µ2 > . . . > muk are distinct eigenvalues of A. The φ(x) =∏k
i=1(x− µk) is called the minimal polynomial of A. We have

φ(A) = 0.

Any polynomial f(x) with f(A) = 0 is divisible by φ(x).
For any pair of vertices u, v, the distance d(u, v) is the shortest length of any

uv-path. The diameter of graph G is the maximum distance among all pairs of
vertices which belongs to the same connected component.

Theorem 3 The diameter of a graph is less than its number of distinct eigen-
values.

Proof: Without loss of generality, we can assume G is connected. Let k be the
number of distinct eigenvalues. The minimum polynomial φ(x) has degree k.
Since φ(A) = 0, Ak can be expressed as a linear combination of I, A, . . . , Ak−1.
Suppose the diameter of G is greater than or equal to k. There exists a pair
of vertices u and v satisfying d(u, v) = k. We have (Ak)uv ≥ 1 and (Ai)uv = 0
for i = 0, 1, 2, . . . , Ak−1. This is a contradiction to the fact Ak is a linear
combination of I, A, . . . , Ak−1. �

This result is tight for the hypercube Qn.
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