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Definition 1 A matching in a graph G is a set of non-loop edges with no shared
endpoints.

Definition 2 The vertices incident to the edges of a matching M are saturated
by M. Note: All other vertices are said to be unsaturated.

Definition 3 A perfect matching in a graph G is a matching that saturates
every vertezx.

Definition 4 An M -alternating path is a path that alternates between edges
that are in M and edges that are not in M.

Definition 5 An M -augmenting path is a M -alternating path where the end-
points of the path are unsaturated by M.

Definition 6 A mazimal matching M is a matching such that M united with
any other edge is not a matching. Also, M is a maximal matching if |M| > | M’ |
for any matching M'.

Lemma 1 FEvery component of the symmetric difference of two matchings is a
path or is an even cycle.

Definition 7 The symmetric difference of two sets A and B, denoted AAB is
AAB = (A\B)U (B\A)
Proof: Let M; and Ms be two matchings. Also let
F =M AMs;.

Considering F' as a subgraph we can see that dp(v) < 2 for any vertex v. So, F
is a graph that is the disjoint union of cycles and paths. But those cycles can
not be odd cycles since odd cycles are not a union of two matchings. Therefore
each component of F' is either a path or an even cycle. 0.

Theorem 1 (Berge 1957) A matching M in a graph G is a mazimal match-
ing on G if and only if G has no M -augmenting paths.

Proof: = Proof by Contraposition:
We need to show:
G has an M-augmented path = M is not a maximal matching. Let P be an



M-augmented path in G (written so that the first and final edges in the path
are not in M). Also, let
M' = MAP.

Then M’ is a matching.
M| = |M| +1.

Therefore M is not a maximal matching.

(<) Proof by Contraposition We need to show: M is not a maximal matching
= 3 an M-augmented path Let M’ be a maximal matching. Considering
MAM', we see that MAM' is the disjoint union of paths and even cycles.
Case 1 : If 3 a path in MAM'.

1. | P | is even. Then P’s contribution to
| M|~ | M|=0.

2. | P | is odd and the first edge of the path is an element of M. Then P’s
contribution to
| M| —| M |=-1.

3. | P|is odd and the first edge of the path is an element of M’. Then P’s
contribution to
M|~ | M|=1.

Case 2 : If 3 an even cycle in MAM’. Then the cycle’s contribution to
| M| — | M|=0.
If we sum up all contributions then we get that
| M| — | M|=1.

Therefore we know that part three of Case one must occur. So then 3 a path P
where the first edge of the path is an element of M’. P is then an M-augmented
path. Therefore 3 an M-augmented path. 0.

Hall’s Matching Condition

Theorem 2 (Hall 1935) A X —Y bipartite graph G has a matching that sat-
urates X if and only if
| N(S) |<| S|VS C X.

Proof: (=) Let M be a matching in G that saturates X. Then M defined
a map f such that
f: X—Y

is a one-to-one mapping (since M saturates X). Then we know that

N(S) 2 f(S).



| N(S) [Z] £(S) =] S |

(since f is one-to-one).

(<) Proof by Contraposition We need to show: If M is a maximal matching
and M does not saturate X = 3 a set S such that | N(S) |<| S |. Let = be a
vertex in X which is not saturated by M. Also let

S = {s|scanbereachedfromzusinganM — alternatingpathands € X }.
Also let
T = {t|[tcanbereachedfromausinganM — alternatingpathands € Y'}.

4 Claim: M matches T with S\{z}. Proof: Vs € S\{z} 3 an M-alternating
path from X to S. The length of this path is even and the matching M defines
a map f from S\{z} — T where f(S)= the vertex directly before s in the
M-augmented path.

Then f is well-defined, one-to-one, and onto. (Note: f is onto since the matching
M is maximal).
Now we know that

[ T |=l S\{z} =] 5] -1

We also know that
N(s)=T

(Trivially) Therefore we can conclude using these two equations that...
[ N(s) |=| T [=] S| -1

0.
Corollary: ¥ k > 0 every k-regular bipartite graph has a perfect matching.
Proof: Let X and Y be the two partitions of a k-regular bipartite graph. Then
we know that
kx| X |=kx|Y |
SO
| X =Y.

Therefore, any matching that saturates X also saturates Y and vice versa. Then
to prove the corollary, it is sufficient to show that Hall’s Matching Condition
holds here. Therefore we must show that... V.S C X, | N(5) |>| S|

So, the number of edges between S and

N(S)=kx| S|

which is less than the number or edges leaving N(S). Therefore, kx | S |< kx |
N(S)|=]SI<|N(S)|. a.



Definition 8 A wvertex cover of a graph G is a set Q C V(QG) that contains at
least one endpoint of every edge.

Definition 9 An edge cover of a graph G is a subset L of the edges of G such
that every vertex of V(G) is incident to some edge of L.

Definition 10 «(G) is the mazimum size of an independent set in a graph G.
Definition 11 o/(G) is the minimum size of all of the matchings of a graph G.
Definition 12 §(G) is the minimum size of all vertex covers of a graph G.

Definition 13 5'(G) is the minimum size of all the edge covers of a graph G.

Theorem 3 (Ko6nig and Egervary 1931) If a graph G is a bipartite graph
then the mazimum size of a matching in G equals the minimum size of a vertex
cover. So,

Example 1 This theorem does not hold in general if the graph is not bipartite.
Let
G =Cs.

Then
o (G) =2 +# 3 =8(G).

Proof: First observe that for any matching M and any vertex cover ) we
have | @ |>| M | . Suppose that () is a minimal vertex cover. (We aim to
construct a matching of size | Q | ). Let

R=QnNX

and let
T=QnY

where X and Y are the two partitions of the bipartite graph G. Now construct
a matching from R to Y\T. This matching saturates R. Now it is sufficient to
show that Hall’s Condition on the induced subgraph H on RU Y\T holds.
Reminder: Hall’s Conditions says that for any subset S C R, | Ng(S) [>] S |.
¢ Assume Hall’s condition does not hold.
If 3 an S such that | Ng(S) |[<| S | replace S by Ny (S) in Q. Now QU(N(S))\S
is a vertex cover. But the size of this vertex cover is less than the size of (). This
is a contradiction to the minimality of Q). Therefore Hall’s Condition is verified.
Now we can say that there is a matching from R to Y — T that saturates R.
Similarly there is a matching from 7" to X — R that saturates T'. Let M be the
union of these two matchings. Then we know that

| M =R+ |T|= Q]|

and we have successfully constructed a matching of size | @ | . 0.



Proposition:

a(G) + B(G) = n(G)

OR A set S is an independent set of G <= the complement of S is a vertex
cover of G.

Theorem 4 (Gallai 1959) If G is a graph without isolated vertices then
o (G) + B'(G) = n(G).

Proof: Show:
B'(G) < n(G) - (G)

Let M be a maximum matching, then | M |= o/(G). We need to construct an
edge cover L of size n(G)— | M | .

For any unsaturated vertex v pick an edge e, which is incident to z.

Then L = M U {e;} {where x is an unsaturated vertex}. Then | L |=| M | + |
{unsaturatedvertices} |=| M | +n(G) —2 | M |=n(G)— | M | . Therefor L is
a vertex cover.

For the second part Show:

o (G) =z n(G) - B'(G).

Assume that L is a minimal edge cover,
| L |=B'(G).

Our goal is to construct a matching M with size equal to n(G)— | L | . (Note:
L contains no P;). Based on this we know that L is the disjoint union of k stars.
Then

| L |=n(G) — k.

So,
k=n(G)—|L]|.

Pick one edge in each star and let M equal that set. So,
| M|=k=n(G)—-|L].

Now, M is a matching with the appropriate size.
Combining parts one and two yields...

' (G) + B(G) = n(Q).
0.
Theorem 5 (Konig) If G is a bipartite graph with no isolated vertices then
a(@) = §(@).

The proof begins the next section.



