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Definition 1 A matching in a graph G is a set of non-loop edges with no shared

endpoints.

Definition 2 The vertices incident to the edges of a matching M are saturated

by M . Note: All other vertices are said to be unsaturated.

Definition 3 A perfect matching in a graph G is a matching that saturates

every vertex.

Definition 4 An M -alternating path is a path that alternates between edges

that are in M and edges that are not in M .

Definition 5 An M -augmenting path is a M -alternating path where the end-

points of the path are unsaturated by M .

Definition 6 A maximal matching M is a matching such that M united with

any other edge is not a matching. Also, M is a maximal matching if |M | ≥ |M ′ |
for any matching M ′.

Lemma 1 Every component of the symmetric difference of two matchings is a

path or is an even cycle.

Definition 7 The symmetric difference of two sets A and B, denoted A∆B is

A∆B = (A\B) ∪ (B\A)

Proof: Let M1 and M2 be two matchings. Also let

F = M1∆M2.

Considering F as a subgraph we can see that dF (v) ≤ 2 for any vertex v. So, F

is a graph that is the disjoint union of cycles and paths. But those cycles can
not be odd cycles since odd cycles are not a union of two matchings. Therefore
each component of F is either a path or an even cycle. �.

Theorem 1 (Berge 1957) A matching M in a graph G is a maximal match-

ing on G if and only if G has no M -augmenting paths.

Proof: ⇒ Proof by Contraposition:
We need to show:
G has an M -augmented path =⇒ M is not a maximal matching. Let P be an
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M -augmented path in G (written so that the first and final edges in the path
are not in M). Also, let

M ′ = M∆P.

Then M ′ is a matching.
|M ′| = |M | + 1.

Therefore M is not a maximal matching.
(⇐) Proof by Contraposition We need to show: M is not a maximal matching

=⇒ ∃ an M -augmented path Let M ′ be a maximal matching. Considering
M∆M ′, we see that M∆M ′ is the disjoint union of paths and even cycles.
Case 1 : If ∃ a path in M∆M ′.

1. | P | is even. Then P ’s contribution to

| M ′ | − | M |= 0.

2. | P | is odd and the first edge of the path is an element of M. Then P ’s
contribution to

| M ′ | − | M |= −1.

3. | P | is odd and the first edge of the path is an element of M ′. Then P ’s
contribution to

| M ′ | − | M |= 1.

Case 2 : If ∃ an even cycle in M∆M ′. Then the cycle’s contribution to

| M ′ | − | M |= 0.

If we sum up all contributions then we get that

| M ′ | − | M |= 1.

Therefore we know that part three of Case one must occur. So then ∃ a path P

where the first edge of the path is an element of M ′. P is then an M-augmented
path. Therefore ∃ an M -augmented path. �.

Hall’s Matching Condition

Theorem 2 (Hall 1935) A X −Y bipartite graph G has a matching that sat-

urates X if and only if

| N(S) |≤| S | ∀S ⊆ X.

Proof: (⇒) Let M be a matching in G that saturates X . Then M defined
a map f such that

f : X −→ Y

is a one-to-one mapping (since M saturates X). Then we know that

N(S) ⊇ f(S).
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| N(S) |≥| f(S) |=| S |

(since f is one-to-one).
(⇐) Proof by Contraposition We need to show: If M is a maximal matching

and M does not saturate X ⇒ ∃ a set S such that | N(S) |≤| S |. Let x be a
vertex in X which is not saturated by M . Also let

S = {s|scanbereachedfromxusinganM − alternatingpathands ∈ X}.

Also let

T = {t|tcanbereachedfromxusinganM − alternatingpathands ∈ Y }.

� Claim: M matches T with S\{x}. Proof: ∀ s ∈ S\{x} ∃ an M -alternating
path from X to S. The length of this path is even and the matching M defines
a map f from S\{x} −→ T where f(S)= the vertex directly before s in the
M -augmented path.
Then f is well-defined, one-to-one, and onto. (Note: f is onto since the matching
M is maximal).
Now we know that

| T |=| S\{x} |=| S | −1

We also know that
N(s) = T

(Trivially) Therefore we can conclude using these two equations that...

| N(s) |=| T |=| S | −1

�.
Corollary: ∀ k > 0 every k-regular bipartite graph has a perfect matching.

Proof: Let X and Y be the two partitions of a k-regular bipartite graph. Then
we know that

k∗ | X |= k∗ | Y |

so
| X |=| Y | .

Therefore, any matching that saturates X also saturates Y and vice versa. Then
to prove the corollary, it is sufficient to show that Hall’s Matching Condition
holds here. Therefore we must show that... ∀ S ⊆ X , | N(S) |≥| S |

So, the number of edges between S and

N(S) = k∗ | S |

which is less than the number or edges leaving N(S). Therefore, k∗ | S |≤ k∗ |
N(S) | ⇒ | S |≤| N(S) | . �.
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Definition 8 A vertex cover of a graph G is a set Q ⊆ V (G) that contains at

least one endpoint of every edge.

Definition 9 An edge cover of a graph G is a subset L of the edges of G such

that every vertex of V (G) is incident to some edge of L.

Definition 10 α(G) is the maximum size of an independent set in a graph G.

Definition 11 α′(G) is the minimum size of all of the matchings of a graph G.

Definition 12 β(G) is the minimum size of all vertex covers of a graph G.

Definition 13 β′(G) is the minimum size of all the edge covers of a graph G.

Theorem 3 (König and Egervary 1931) If a graph G is a bipartite graph

then the maximum size of a matching in G equals the minimum size of a vertex

cover. So,

α′(G) = β(G).

Example 1 This theorem does not hold in general if the graph is not bipartite.

Let

G = C5.

Then

α′(G) = 2 6= 3 = β(G).

Proof: First observe that for any matching M and any vertex cover Q we
have | Q |≥| M | . Suppose that Q is a minimal vertex cover. (We aim to
construct a matching of size | Q | ). Let

R = Q ∩ X

and let
T = Q ∩ Y

where X and Y are the two partitions of the bipartite graph G. Now construct
a matching from R to Y \T . This matching saturates R. Now it is sufficient to
show that Hall’s Condition on the induced subgraph H on R ∪ Y \T holds.
Reminder: Hall’s Conditions says that for any subset S ⊆ R, | NH(S) |≥| S |.

� Assume Hall’s condition does not hold.
If ∃ an S such that | NH(S) |<| S | replace S by NH(S) in Q. Now Q∪(N(S))\S
is a vertex cover. But the size of this vertex cover is less than the size of Q. This
is a contradiction to the minimality of Q. Therefore Hall’s Condition is verified.
Now we can say that there is a matching from R to Y − T that saturates R.
Similarly there is a matching from T to X −R that saturates T . Let M be the
union of these two matchings. Then we know that

| M |=| R | + | T |=| Q |

and we have successfully constructed a matching of size | Q | . �.
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Proposition:

α(G) + β(G) = n(G)

OR A set S is an independent set of G ⇐⇒ the complement of S is a vertex
cover of G.

Theorem 4 (Gallai 1959) If G is a graph without isolated vertices then

α′(G) + β′(G) = n(G).

Proof: Show:
β′(G) ≤ n(G) − α′(G)

Let M be a maximum matching, then | M |= α′(G). We need to construct an
edge cover L of size n(G)− | M | .

For any unsaturated vertex v pick an edge ex which is incident to x.
Then L = M ∪ {ex} {where x is an unsaturated vertex}. Then | L |=| M | + |
{unsaturatedvertices} |=| M | +n(G) − 2 | M |= n(G)− | M | . Therefor L is
a vertex cover.
For the second part Show:

α′(G) ≥ n(G) − β′(G).

Assume that L is a minimal edge cover,

| L |= β′(G).

Our goal is to construct a matching M with size equal to n(G)− | L | . (Note:
L contains no P4). Based on this we know that L is the disjoint union of k stars.
Then

| L |= n(G) − k.

So,
k = n(G)− | L | .

Pick one edge in each star and let M equal that set. So,

| M |= k = n(G)− | L | .

Now, M is a matching with the appropriate size.
Combining parts one and two yields...

α′(G) + β′(G) = n(G).

�.

Theorem 5 (König) If G is a bipartite graph with no isolated vertices then

α(G) = β′(G).

The proof begins the next section.
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