Math 776 Graph Theory Lecture Notes
Extremal Graph Theory

Lectured by Lincoln Lu
Transcribed by Sandy Johnson

Theorem 1 (Mantel 1907) The maximum number of edges in an n-vertex
triangle-free simple graph is |n?/4].

Definition 1 A graph G is H-free if G has no subgraph isomorphic to H.
A triangle-free graph is Cj free.
Example 1 Bipartite graphs are C3 free since they contain no odd cycles.

Proof of Theorem 1: Let G be a triangle-free graph. Let z be a vertex
of G with maximum degree. Let k = d(x) be the degree of . Let N(z) be
the set of neighbors of x. Since G is triangle-free, there are no edges whose
endpoints are both in N(z). N(z) forms a vertex cover. The number of edges
e(G) satisfies
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Definition 2 A Turan Graph T, , is a complete r-partite graph with n ver-
tices whose partite sets differ in size by at most 1.

Theorem 2 (Turdn, 1941) Among the n-vertex simple graphs with no r + 1
clique, T,, » has the mazimum number of edges.

Lemma 1 Among simple r-partite graphs with n-vertices, the Turdn graph is
the unique graph with the most edges.

Proof of Lemma: Let G be a simple r-partite graph with the most edges.
1. G must be a complete r-partite graph.
2. Any two partite sets of G differ in size by at most one.

Prove 2. by contradiction. Say |vi| < |va| — 2. Pick any vertex in vy and move
it up into v;. Call this graph G'.
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Contradiction.
Sayn=ar+b0<b<r. So,n=(a+1)+..+(a+1)+a+..+a.
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Hence, T, » has the most edges among r-partite simple graphs. O

Proof of Turdn Theorem:
Claim: Among graphs with no r 4+ 1 clique, the maximum is achieved by an
r-partite graph. For each G, construct H satisfies:



1. H is r-partite.
2. e(G) <e(H).

Prove by induction on r.

Initial Case:
(r=1): G has no edges, i.e. G is K5 free. This case is trivial.
(r=2): Mantel’s Theorem

Inductive Hypothesis:

Suppose the claim is true for r. For r +1, let G be a graph containing no K, 2.
Let x be a vertex with maximum degree k. The induced subgraph on N(x)
contains no K, 1. By inductive hypothesis, there is an r-partite graph H' with
e(GN()) < e(H'). Let H be the graph joining N(z) and H'.

1. H is an r + 1 partite graph.

2.
e(H) = [N@k+e(H')
> Z dy + e(GN(x))
yEN (z)
> e(Q).
By the lemma, T}, , has the most edges. O

Definition 3 Turdn number t(n,G) is the mazimum number of edges that
an n-vertexr G-free simple graph can have.

t(n,KT) = e(Tn,rfl)
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l.o.t = lower order term

What is lim,,_ o




Theorem 3 (Erdds-Simonovits-Stone 1946) For any G, lim, . % =
2

1
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Theorem 4 (Erdés-Stone) For all integers T > 2 and s > 1 and every e > 0,
there exists an integer ng such that every graph with n > ng vertices and at least

e(Tpr—1) +en? edges contains K asa subgraph.
For any graph H, we define H®) as follows:

L V(H®) ={V(H) x [s]}

2. B(H®) = {(u,i) ~ (v,7): if wv € E(H)}

H®) is called the blow-up graph.
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Let G be a graph with x(G) = r (means G is r-colorable). We can color
V(G) so that the endpoints of each edge receive different colors. We can see

G C KT(S) for some s.
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Turén graph T, ,_; is G-free and has (1 — —15)(3) + O(n?) edges. Because
G CT,,_1, then x(G) <r—1

t(n,G) < (1 - 25)(4) +en? for any € > 0.
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1 <t(n,G)<17
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Szemerédi’s Regularity Lemma = Blow-up Lemma = Erdos-Stone Theorem
= Erdos-Simonovits-Stone Theorem

Lemma 2 (Szemerédi’s Regularity Lemma) For any ¢ > 0, and every in-
teger m > 1, there exists an integer M such that every graph of order at least
m admits an e-regular partition {vo, vy, ..., v} with m <k < M.

e(A,B)
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Definition 4 A,B are disjoint sets. The density d(A, B) =

Definition 5 (A,B) is called e-regular if for all X C A)Y C B with |X| >
e|A| and |Y| > €|B|,
|[d(X,Y)| —d(A,B)| <e.

(e is a very small constant 0 < & < 1).

Definition 6 A partition {vg, v1,...,v,} of V(G) is called e-regular if



1. |vo| < elv|, vo-exceptional set
2. |v1| = ... = |vg]
3. All but at most ek? of the pairs (v;,v;) with 1 <1i < j <k are e-regular.

Lemma 3 Suppose (A, B) is e-reqular. Then for any Y C B with |Y| > ¢|B],
then all but €|A| of the vertices in A have (each) at least (d — €)|Y'| neighbors
nY.

Proof of Lemma: Let X = {ve A: |[N(v)NY < (d—¢)|Y]|}. If | X| > ¢|4],
e(X,Y) <[X|(d—e)[Y]
d(X,Y) < d — € Contradiction. O

Lemma 4 (Blow-Up) For all d € (0,1] and A > 1, there exists an g9 > 0
with the following property: If G is any graph, H is a subgraph with A(H) < A,
S € N and R is any reqularity graph of G with € < gq, l > i then H C Ry =
H CG. (A= mazimum degree)

Proof of Lemma: By regularity lemma,

Loju]| = ve = ... = ok =1

2. |U0| < el

3. All but €k? pairs of (v;,v;) are e-regular.

For vertex v; € V(H), we maintain a set of candidates, S;. v; — Vj(;) where
f(4) is the index of partition that v; belongs to.

Initially, S; = Vj¢;y. For i from 1 to |H| pick v; € S; then update S; for
all v; € Ny (v;).

Sj — Ng(vi) n SJ‘
new old
|Sj | > (d_5)|5j |

For any time, |S;| > (d — &)?l. Choose € such that (d —e)® > (A + 1)e. So,
IS;| > (d—¢e)?1 > (A +1)el. Since (A + 1)el > Ael, the procedure of selecting
v; will not stop. We construct H C G. O
Theorem 5 (Erdds-Stone) Suppose G has e(Kﬁsjl) + An? edges then there
exists N forn > Ny G contains KT(S).

Sketch of proof:
Kr(s) C R®

K, CR CR
We define R’ as follows:
1. vv; € E(R') if (v;,v,) are e-regular and d(v;,vj) > A

We show R’ has enough edges e(R’) > (1 — Til)(g)




