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Theorem 1 (Mantel 1907) The maximum number of edges in an n-vertex
triangle-free simple graph is bn2/4c.

Definition 1 A graph G is H-free if G has no subgraph isomorphic to H.

A triangle-free graph is C3 free.

Example 1 Bipartite graphs are C3 free since they contain no odd cycles.

Proof of Theorem 1: Let G be a triangle-free graph. Let x be a vertex
of G with maximum degree. Let k = d(x) be the degree of x. Let N(x) be
the set of neighbors of x. Since G is triangle-free, there are no edges whose
endpoints are both in N(x). N(x) forms a vertex cover. The number of edges
e(G) satisfies

e(G) ≤
∑

y∈N(x)

d(y)

≤
∑

y∈N(x)

k

= k · |N(x)|
= k(n− k)

≤
(

k + (n− k)
2

)2

=
n2

4

Since e(G) is an integer,

e(G) ≤ bn
2

4
c.

This upper bound is reachable by

Kbn
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e = bn
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Case 1: n is even
n = 2k
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So,
bn
2
cdn

2
e = k2

and

bn
2

4
c = k2

Case 2: n is odd
n = 2k + 1

So,
bn
2
cdn

2
e = k(k + 1) = k2 + k

and

bn
2

4
c = b (2k + 1)2

4
c = bk2 + k +

1
4
c = k2 + k

�

Definition 2 A Turán Graph Tn,r is a complete r-partite graph with n ver-
tices whose partite sets differ in size by at most 1.

Theorem 2 (Turán, 1941) Among the n-vertex simple graphs with no r + 1
clique, Tn,r has the maximum number of edges.

Lemma 1 Among simple r-partite graphs with n-vertices, the Turán graph is
the unique graph with the most edges.

Proof of Lemma: Let G be a simple r-partite graph with the most edges.

1. G must be a complete r-partite graph.

2. Any two partite sets of G differ in size by at most one.

Prove 2. by contradiction. Say |v1| ≤ |v2| − 2. Pick any vertex in v2 and move
it up into v1. Call this graph G′.

e(G′) = e(G)− dxold + dxnew

= e(G)− (n− |v2|) + (n− |v1| − 1)
= e(G) + |v2| − |v1| − 1
> e(G)

Contradiction.
Say n = ar + b, 0 ≤ b ≤ r. So, n=(a + 1) + ... + (a + 1)︸ ︷︷ ︸

b

+ a + ... + a︸ ︷︷ ︸
r−b

.

Hence, Tn,r has the most edges among r-partite simple graphs. �

Proof of Turán Theorem:
Claim: Among graphs with no r + 1 clique, the maximum is achieved by an
r-partite graph. For each G, construct H satisfies:
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1. H is r-partite.

2. e(G) ≤ e(H).

Prove by induction on r.

Initial Case:
(r=1): G has no edges, i.e. G is K2 free. This case is trivial.
(r=2): Mantel’s Theorem

Inductive Hypothesis:
Suppose the claim is true for r. For r +1, let G be a graph containing no Kr+2.
Let x be a vertex with maximum degree k. The induced subgraph on N(x)
contains no Kr+1. By inductive hypothesis, there is an r-partite graph H ′ with
e(GN(x)) ≤ e(H ′). Let H be the graph joining N(x) and H ′.

1. H is an r + 1 partite graph.

2.

e(H) = |N(x)|k + e(H ′)

≥
∑

y∈N(x)

dy + e(GN(x))

≥ e(G).

By the lemma, Tn,r has the most edges. �

Definition 3 Turán number t(n, G) is the maximum number of edges that
an n-vertex G-free simple graph can have.

t(n, Kr) = e(Tn,r−1)

=
(

n

2

)
− b

(
a + 1

2

)
− (r − 1− b)

(
a

2

)
When b=0,

t(n, Kr) =
(

n

2

)
− (r − 1)

( n
r−1

2

)
≈ (1− 1

r − 1
)
(

n

2

)
+ l.o.t.

= (1− 1
r − 1

)
(

n

2

)
+ O(n2)

l.o.t = lower order term

What is limn→∞
t(n,G)

(n
2)

?
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Theorem 3 (Erdös-Simonovits-Stone 1946) For any G, limn→∞
t(n,G)

(n
2)

=

1− 1
χ(G)−1

Theorem 4 (Erdös-Stone) For all integers r ≥ 2 and s ≥ 1 and every ε > 0,
there exists an integer n0 such that every graph with n ≥ n0 vertices and at least
e(Tn,r−1) + εn2 edges contains K

(s)
r as a subgraph.

For any graph H, we define H(s) as follows:

1. V (H(s)) = {V (H)× [s]}

2. E(H(s)) = {(u, i) ∼ (v, j): if uv ∈ E(H)}

H(s) is called the blow-up graph.
K

(s)
r = Trs,r

Let G be a graph with χ(G) = r (means G is r-colorable). We can color
V (G) so that the endpoints of each edge receive different colors. We can see
G ⊆ K

(s)
r for some s.

t(n, G) ≥ (1− 1
r − 1

)
(

n

2

)
+ O(n2)

Turán graph Tn,r−1 is G-free and has (1 − 1
r−1 )

(
n
2

)
+ O(n2) edges. Because

G ⊆ Tn,r−1, then χ(G) ≤ r − 1

t(n, G) ≤ (1− 1
r−1 )

(
n
2

)
+ εn2 for any ε > 0.

1− 1
r − 1

≤ t(n, G)(
n
2

) ≤ 1− 1
r − 1

+ ε

Szemerédi’s Regularity Lemma ⇒ Blow-up Lemma ⇒ Erdös-Stone Theorem
⇒ Erdös-Simonovits-Stone Theorem

Lemma 2 (Szemerédi’s Regularity Lemma) For any ε > 0, and every in-
teger m ≥ 1, there exists an integer M such that every graph of order at least
m admits an ε-regular partition {v0, v1, ..., vk} with m ≤ k ≤M .

Definition 4 A,B are disjoint sets. The density d(A,B) = e(A,B)
|A||B| .

Definition 5 (A,B) is called ε-regular if for all X ⊆ A, Y ⊆ B with |X| ≥
ε|A| and |Y | ≥ ε|B|,

|d(X, Y )| − d(A,B)| ≤ ε.

(ε is a very small constant 0 < ε < 1).

Definition 6 A partition {v0, v1, ..., vn} of V (G) is called ε-regular if
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1. |v0| ≤ ε|v|, v0-exceptional set

2. |v1| = ... = |vk|

3. All but at most εk2 of the pairs (vi, vj) with 1 ≤ i < j ≤ k are ε-regular.

Lemma 3 Suppose (A,B) is ε-regular. Then for any Y ⊆ B with |Y | ≥ ε|B|,
then all but ε|A| of the vertices in A have (each) at least (d − ε)|Y | neighbors
in Y .

Proof of Lemma: Let X = {v ∈ A : |N(v) ∩ Y ≤ (d− ε)|Y |}. If |X| ≥ ε|A|,
e(X, Y ) ≤ |X|(d− ε)|Y |
d(X, Y ) < d− ε Contradiction. �

Lemma 4 (Blow-Up) For all d ∈ (0, 1] and 4 ≥ 1, there exists an ε0 > 0
with the following property: If G is any graph, H is a subgraph with 4(H) ≤ 4,
S ∈ N and R is any regularity graph of G with ε ≤ ε0, l ≥ s

s0
then H ⊆ Rs ⇒

H ⊆ G. (4 = maximum degree)

Proof of Lemma: By regularity lemma,

1. |v1| = |v2| = ... = |vk| = l

2. |v0| ≤ εl

3. All but εk2 pairs of (vi, vj) are ε-regular.

For vertex vi ∈ V (H), we maintain a set of candidates, Si. vi → Vf(i) where
f(i) is the index of partition that vi belongs to.

Initially, Si = Vf(i). For i from 1 to |H| pick vi ∈ Si then update Sj for
all vj ∈ NH(vi).

Sj ← NG(vi) ∩ Sj

|Snew
j | ≥ (d− ε)|Sold

j |

For any time, |Sj | ≥ (d − ε)4l. Choose ε such that (d − ε)4 ≥ (4 + 1)ε. So,
|Sj | ≥ (d− ε)4l ≥ (4+ 1)εl. Since (4+ 1)εl ≥ 4εl, the procedure of selecting
vi will not stop. We construct H ⊆ G. �

Theorem 5 (Erdös-Stone) Suppose G has e(K(s)
r−1) + λn2 edges then there

exists N for n > Nλ G contains K
(s)
r .

Sketch of proof:
K(s)

r ⊆ R(s)

Kr ⊆ R′ ⊆ R

We define R′ as follows:

1. vivj ∈ E(R′) if (vi, vj) are ε-regular and d(vi, vj) ≥ λ.

We show R′ has enough edges e(R′) > (1− 1
r−1 )

(
k
2

)
.
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